
IDS WG Meeting Minutes
July 28, 2022

1

This IDS WG Meeting was started at approximately 3:00 pm ET on July 28, 2022.

Attendees

Graydon Dodson Lexmark

Matt Glockner Lexmark

Jeremy Leber Lexmark

Alan Sukert

Mike Trent Xerox

Bill Wagner

Steve Young Canon

Agenda Items

1. The topics to be covered during this meeting were:

• Review of the HCD iTC Meetings since our last IDS WG Meeting on 7/14/22

• Special Topic on NISTIR 8397 Guidelines on Minimum Standards for Developer Verification of
Software

• Round Table

2. Meeting began by stating the PWG Anti-Trust Policy which can be found at
https://www.pwg.org/chair/membership_docs/pwg-antitrust- policy.pdf and the PWG Intellectual
Property Policy which can be found at https://www.pwg.org/chair/membership_docs/pwg-ip-policy.pdf.

3. Al provided a summary of what was covered at the HCD iTC Meetings since the last IDS Workgroup
meeting on 7/14/22:

• Since the HCD iTC had agreed at the 7/11/22 HCD iTC meeting that there would be no more
changes to ether the FDP_UDU_EXT.1 or FPT_WIPE_EXT.1 SFRs, that removed the last major
barrier to completing the Final Drafts of both the HCD cPP and HCD SD. The work at both the
7/18 and 7/25 HCD iTC Meetings was doing the last-minute comment resolutions/clarifications so
the editors could complete the Final Drafts of both documents and get the Final Drafts out as
soon as possible.

At the 7/18 meeting it was clear that neither the HCD cPP or the HCD SD Final Drafts would be
ready for public review by the planned 7/18 date. The new plan was for both documents to be
ready by 7/25. Working off-line, Al and the HCD cPP editor Brian Volkoff were able to complete
work on the HCD cPP Final Draft; the HCD cPP Final Draft (Version 0.13 dated 7/25/22) was
made available for public review on 7/25/22. Al prepared a document listing the major changes
that are included in the HCD cPP Final Draft which he went through in detail at the meeting. The
full list is attached to the end of these minutes. Note that most the changes deal directly or
indirectly with Cryptographic Erase and/or the two new SFRs FPT_WIPE_EXT.1 and
FDP_UDU_EXT.1.

The Final Draft of the HCD SD was still not ready as of the 7/25 HCD iTC Meeting; the hope is
that it will be ready for final review by Monday August 1st. Al pointed out we are already at least
two weeks behind the new schedule, so we are now talking about mid-September at the earliest
for publishing Version 1.0 of the HCD cPP and HCD SD.

• At the 7/25 meeting the HCD iTC finally began serious discussions about formulating the HCD
iTC Interpretation Team, or HIT. The HIT is a small subset of the full iTC – usually around 6-8
persons – that is responsible for the “maintenance” of the current version of the HCD cPP and
HCD SD while the full iTC works on the content of the next versions of the HCD cPP and HCD
SD.

https://www.pwg.org/chair/membership_docs/pwg-antitrust-%20policy.pdf
https://www.pwg.org/chair/membership_docs/pwg-ip-policy.pdf

IDS WG Meeting Minutes
July 28, 2022

2

The HIT will serve as the first point of contact for questions, comments, possible errors,
suggested changes, etc. in the current version of both documents. The role of the HIT is to review
all of these issues and determine which issues the HIT can address and which issues must be
elevated to the full iTC, and for the issues the HIT an address determine what the proper
response is and generate/publish that response.

In the case of the HIT, that may be required very quickly after the HCD cPP and HCD SD get
published. The reason is that after the documents get published Schemes can issue Position
Statements; if those Position Statements indicate approval of the HCD cPP and HCD SD then
they can be used for certifications of HCDs against those Schemes. The issue becomes whether
Schemes will allow a transition period between the use of the current HCD PP and the new HCD
cPP. The concern is that NIAP’s history has been that they don’t allow any type of transition. So,
it is definitely possible that as soon as NIAP approves the HCD cPP and HCD SD, it will archive
the HCD PP and require all HCDs to be certified against the HCD cPP/SD, maybe even
certifications that are in process

What the HCD iTC has to do to get ready is to determine who will be on the HIT and develop the
processes that the HIT will use to execute – things like:

• How will it determine what issues it handles and what issues have to be handled by the full
iTC

• When and how often will the HIT meet – regularly, as needed, etc.

• Membership issues like what if members don’t show up to meetings, how long will members
be on the HIT (permanently vs. for a fixed time)

• Voting issues – by consensus, 2/3 vs. majority vote if necessary, etc.

The same types of issues that the full iTC put into the Terms of Reference. The HCD iTC plans to
“borrow” heavily from what Interpretation Teams from other iTCs have done. The HCD iTC is
setting up a small subgroup to develop the HIT procedures and determine who should be on the
HIT.

The bottom line is that the HCD iTC over the next two months or so will be very busy doing three
things:

• Addressing comments against the Final Drafts of the HCD cPP and HCD SD and eventually
publishing Version 1.0 of both documents

• Setting up the HIT so it will be ready to go when Version 1.0 of the HCD cPP and HCD SD
are published

• Developing the plan for what the future releases of the HCD cPP and HCD SD will be – what
the time frame for the minor and major releases will be.

4. Al then went through his special topic for the meeting, which was a review of NISTIR 8397
Guidelines on Minimum Standards for Developer Verification of Software, one of the documents he
mentioned at the talk he gave at the 7/14/22 IDS WG Meeting on the progress that had been made
on implementing the Executive Order (EO) 14028 on Improving the Nation’s Cybersecurity since it
had been issued in May 2021. The slides Al presented at the meeting can be found at
https://ftp.pwg.org/pub/pwg/ids/Presentation/Guidelines for Verification of SW.pdf.

Some of the points Al made while reviewing the Guidelines were:

• The guidelines are meant to be minimum standards, not “best practices” of software verification
by software producers. These Guidelines are based on assumption that there is no single
software security verification standard that can encompass all types of software and be both
specific and prescriptive while supporting efficient and effective verification, so they are designed
for each software producers to use in creating their own processes which can be very specific
and tailored to the software products, technology (e.g., language and platform), toolchain, and
development lifecycle model.

https://ftp.pwg.org/pub/pwg/ids/Presentation/Guidelines%20for%20Verification%20of%20SW.pdf

IDS WG Meeting Minutes
July 28, 2022

3

• The Guidelines had some different definitions for key terminology that differed from the standard
definitions for these terms as follows:

• Software: Executable computer programs

• Testing: Any technique or procedure performed on the software itself to gain assurance that
the software will perform as desired, has the necessary properties, and has no important
vulnerabilities

• Verification: Includes methods such as static analysis and code review, in addition to dynamic
analysis or running programs

• Verification assumes standard language semantics, correct and robust compilation or
interpretation engines, and a reliable and accurate execution environment, such as
containers, virtual machines, operating systems, and hardware. Verification may or may
not be performed in the intended operational environment.

• Includes vendor and developer testing

The Guidelines focused on Verification vs. just testing.

• The Guidelines’ “Minimum Standards for Develop Testing” encompasses the following 11 steps,
which are not in the order they would be in a typical Software Development Life-Cycle or a
Secure Software Development Life-Cycle. The eleven steps are as follows:

a) Do Threat Modeling

Al was glad that this was included because this is a critical first step. Threat modeling should
be used early in order to identify design-level security issues and to focus verification and
software needs should drive the threat modeling method(s) used. Threat modeling should be
done multiple times during development, especially when developing new capabilities, to
capture new threats and improve modeling. A key advantage of Threat Modeling is that it
may reveal that certain small pieces of code, typically less than 100 lines, pose significant
risk and require additional code review.

b) Do Automated Testing

Al mentioned that he joined a subgroup of the Common Criteria User’s Forum (CCUF) at a
CCUF Workshop about ten years ago that started looking at the use of test automation for
helping testing against Protection Profiles. Test automation has become critical now,
especially against the HCD PP (and will be against the HCD cPP/SD) because without
automation it will be almost impossible for vendors to do the testing required in the HCD SD
to verify the protocols and all the cryptographic functions in the HCD cPP.

As to what’s in the Guidelines, most of it is straightforward with guidance such as “Automated
verification can be integrated into the existing workflow or issue tracking system’ and
‘Because verification is automated, it can be repeated often, for instance, upon every commit
or before an issue is retired’.

c) Code-Based, or Static, Analysis

This is your classic Static Analysis generally using some type of code analysis tool. It can be
a standards checker, a security code analyzer or one of multiple static analysis tools
available in the market. Al mentioned that early in his career he had to do manual code
inspections on Fortran code which was very difficult an labor-intensive, so tool-based static
analysis is very important.

In terms of the guidelines, the two main points were that stats analysis is:

• Divided into two approaches: 1) code-based or static analysis (e.g., Static Application
Security Testing—SAST) and 2) execution-based or dynamic analysis (e.g., Dynamic
Application Security Testing—DAST) and

IDS WG Meeting Minutes
July 28, 2022

4

• Is recommend using a static analysis tool to check code for many kinds of vulnerabilities
and for compliance with the organization’s coding standards

d) Review for Hardcoded Secrets

It is interesting that this is here. This is essentially review for things like hardcoded
passwords. Al recalled one product while he was at Xerox which was review by a French
security firm which hammered Xerox over the number of hardcoded passwords. So, it is an
important thing for vendors to review to make sure there are no hardcoded passwords or
other hardcoded secrets that can be used by an attacker.

e) Run with Language-Provided Checks and Protection

Essentially this guideline is saying that if you have a compiler or interpreter or a software
language that has options that enforce security or have built-in checks and protections both
during development and in the software shipped, make sure you that you use them.

f) Black Box Test Cases

This is your classic “Black Box” testing where you treat the system has a “black box” and look
for ways to attack it as a system. This includes things like Boundary Value Testing and
testing various input sources to the system like web interfaces. Basically, Black Box tests are
based on functional specifications or requirements, negative tests (invalid inputs and testing
what the software should not do), denial of service and overload, input boundary analysis,
and input combinations.

Key guidelines are:

• Tests cases should be more comprehensive in areas indicated as security sensitive or
critical by general security principles

• If you can formally prove that classes of errors cannot occur, some of the testing
described above may not be needed

g) Code-Based Test Cases

This is the traditional Unit Testing done by the code developer where branches, function
calls, etc. are tested. Code coverage is a very important metric here as are other metrics like
cyclomatic complexity.

It is interesting that the code coverage guideline in the document is that executing the test
suite should achieve a minimum of 80% statement coverage. That is unusual, since most
developments set a goal of 100% code coverage.

h) Historical Test Cases

This is really about Regression Testing - test cases created specifically to show the presence
(and later, the absence) of a bug based on prior history. However, the Guidelines do state
here that a better option is adoption of an assurance approach, such as choice of language,
that precludes the bug entirely

i) Fuzzing

Fuzzing is a type of testing that has been around for a while but has never really gained

mainstream acceptance. Fuzzing or fuzz testing is an automated software testing technique
that involves providing invalid, unexpected, or random data as inputs to a computer
program. https://en.wikipedia.org/wiki/Fuzzing is a link to a good explanation of what
fuzzing is.

The Guidelines state that the advantage of generality is that such tools can try an immense
number of inputs with minimal human supervision. The tools can be programmed with
inputs that often reveal bugs, such as very long or empty inputs and special characters.

https://en.wikipedia.org/wiki/Fuzzing

IDS WG Meeting Minutes
July 28, 2022

5

j) Web Application Scanning

Since most HCDs have a web interface, Web Application Scanning become an important
type of testing. Essentially the Guidelines state that developers should use some type of
security testing tool or web app scanner to probe the web app for failures.

k) Check Included Software Components

The last step is basically to make sure you check all your Open Source and 3rd Party
components for known vulnerabilities against known vulnerability databases. Also, make sure
you have tools that can identify what your Open Source and 3rd Party components are.

• Lastly, the Guidelines provided some additional guidance in three other areas beyond testing:

a) Good Software Development Practices

The Guidelines basically said that developed should follow the recommendations in NIST
Special Publication 800-218 Secure Software Development Framework (SSDF) Version 1.1:
Recommendations for Mitigating the Risk of Software Vulnerabilities. The Guidelines also
indicated that Enterprises with good secure development processes had the following
characteristics:

• Create a culture where security is everyone’s responsibility.

• Uses tools to automate security checking, often referred to as Security as Code

• Tracks threats and vulnerabilities, in addition to typical system metrics

• Shares software development task information, security threat, and vulnerability
knowledge between the security team, developers, and operations personnel

b) Good Software Installation and Operation Practices

This covers areas like:

• Configuration Files – Making sure software releases include secure default settings and
caveats regarding deviations from those settings; security verification should include all
valid settings and (possibly) assurance that invalid settings will be caught by run-time
checks and the acquirer should be warned or notified that settings other than those
explicitly permitted will invalidate developer’s security assertions

• File Permissions: Make sure that the principle of least privilege is established and that
roles are established so that only those with the proper permissions can read, write,
execute, and delete files

• Network Configuration: Make sure verification activities include checks for invalid secure
network settings

• Operational Configuration: Make sure verifications are done in as close to the anticipated
Operational Environment as possible and any assumptions associated with the
Operational Environment that affect Verification are known

c) Additional Software Assurance Technology

This section just listed some advances like cloud technology that may affect software
verification in the future

5. There was no Round Table for today’s meeting

6. Actions: None

IDS WG Meeting Minutes
July 28, 2022

6

Next Steps

• The next IDS WG Meeting will be August 11, 2022 at 3:00P ET / 12:00N PT. Main topics will be

review of the HCD iTC Meetings since this meeting and preparation for the August 18th IDS Face to

Face Session.

• The next IDS Face to Face Session as part of the August PWG Face to Face Meetings is set for

August 18th from 10-12 ET.

IDS WG Meeting Minutes
July 28, 2022

7

MAJOR CHANGES INCLUDED IN FINAL PUBLIC DRAFT HCD cPP

1. To include Cryptographic Erase into the HCD cPP and address concerns
about the fact that the FDP_RIP.1/* SFRs suggested to users that residual data is
permanently removed from wear-leveling storage devices (e.g., SSDs), when in fact
FDP_RIP.* can’t be used for operations involving Cryptographic Erase (CE) because
the actual data is still present in encrypted form, and future technologies might be
capable of breaking the encryption the following was done:

• Replaced SFR FDP_RIP.1/Overwrite Subset residual information protection
with a new SFR FDP_UDU_EXT.1 User.DOC Unavailable that (1) provides the
option for Overwrite for the SFR to apply to both wear-levelling and non-
wear-levelling storage devices and (2) to include destruction of
cryptographic keys as well as overwrite to make USER.DOC unavailable.

• Replaced SFR FDP_RIP.1/Purge Subset residual information protection with a
new SFR FPT_WIPE_EXT.1 Data Wiping that requires that customer-supplied
D.USER and D.TSF data stored in non-volatile storage be made unavailable
using Cryptographic Erase as a mandatory method and optionally using none or
one or more of five other methods – overwrite, block erase, media specific eMMC
method, media specific ATA erase method, or media specific NVMe method.

• Added or modified wording addressing Cryptographic Erase or destruction
of cryptographic keys in the following Sections:

a. Section 1.4.2 USE CASE 2: Conditionally Mandatory Use Cases, Item 4.
Nonvolatile Storage Devices

b. Section 1.4.3 USE CASE 3: Optional Use Cases, Item 2. Redeploying or
Decommissioning the HCD

• Added the following statement to the definition of O.STORAGE_ENCRYPTION in
Section 3.5.4 Storage Encryption: “…and the TOE shall provide a function that
an authorized administrator may destroy encryption keys or keying material if the
TOE supports a function for removing the TOE from its Operational
Environment”.

• Added the following note to Section 3.5.7 Wipe Data (optional): Note:
Cryptographic erase which is covered in the mandatory requirement of
FCS_CKM_EXT.4 and FCS_CKM.4 can be used as a method to remove some
parts of User Data and TSF Data, but it cannot be a single method to remove
User Data and TSF Data unless all the data are encrypted.

• Because of the new FDP_UDU_EXT.1 SFR, modified Section 3.5.6 Image
Overwrite (optional) to remove the statement “or by destroying its cryptographic
key” in the last sentence since it was no longer necessary.

• Changed the title of Section 3.5.7 from Purge Data (optional) to Wipe Data
(optional) reflect the new FPT_WIPE_EXT.12 Data Wiping SFR

IDS WG Meeting Minutes
July 28, 2022

8

• Changed the title of Section 4.1.13 from Purge Data (optional) to Wipe Data
(optional) reflect the new FPT_WIPE_EXT.12 Data Wiping SFR

• Changed the Organizational Security Policy (OSP) O.PURGE_DATE to
O.WIPE_DATA to reflect the new FPT_WIPE_EXT.12 Data Wiping SFR

• Modified the Application Note for the SFR FDP_DSK_EXT.1 Protection of Data
on Disk to state that if additional data other than D.USER.DOC and D.TSF.CONF
are encrypted, it will be purged by the cryptographic erase process

2. Modified SFRs FPT_SBT_EXT.1.5 and FPT_SBT_EXT.1.6 for Secure Boot to clarify
that they apply only to Hardware Roots of Trust.

3. Removed the previous Software Functional Requirements table that was in
Appendix H: SFR List, as well as the entire appendix, that mapped SFRs to OSPs.
Replaced this table with a new table in Section 5.12 TOE Security Functional
Requirements Rationale that maps OSPs to SFRs and provides the rationale for that
mapping.

4. Moved SFR FCS_CKM.1/AKG Cryptographic Key Generation (for asymmetric keys)
from a Conditionally Mandatory to an Optional requirement.

5. Added missing or incorrect SFR Mapping Information for several SFRs.

6. Removed the Consistency Rationale Appendix as being repetitive and no longer
needed.

7. The term File Encryption Key (FEK) was incorrectly used in several places in the
document; it was replaced by “BEV or DEK”. Also, is some instances “DEK” was
missing when it should have been included, so in those instances “BEV” was
changed to “BEV or DEK” also.

8. Corrected a typo in Section 5.4.2. FDP_ACF.1 Security attribute based access
control, Table 5. D.USER.JOB Access Control SFP, where “log’ should have been
“job”.

9. Addressed the following NIAP Technical Decisions:

• TD0642: FCS_CKM.1(a) Requirement; P-384 keysize moved to selection

• TD0636: NIT Technical Decision for Clarification of Public Key User
Authentication for SSH

• TD0631: NIT Technical Decision for Clarification of public key authentication for
SSH Server

10. Fixed several grammatical and typographical errors in the document.

