Job Monitoring MIB

From:	Tom Hastings
Date:		04/0403/20/97
Version:	0.871
File:		ftp://ftp.pwg.org/pub/jmp/mibs/jmp-mib.doc .pdf jmp-mibr.doc .pdf .pdr
Status:	FourthThird draft MIB that corresponds to the changes agreed to at the JMP meeting, 04/04/97 in Austin. Harry Lewis's changes to eliminate the Queue and Completed tables and to replace the Job table with the Job ID and Job State table have been incorporated.sixth draft spec as agreed at the 02/07/97 JMP meeting and subsequent telecons. This is version 0.71. There are just a few changes from version 0.7, mostly editorial. See the change history. The Internet-Draft was not posted in time and with these changes, we will not present any MIB document at the IETF meeting on 04/08/97 in Memphis. Instead we will present slides on the current status explaining the tables, which are: General, Job ID, Job State, and Attributes.
The MIB has been greatly simplified so that now there are only 1327 objects in the MIB: 21 mandatory and 6 conditionally mandatory. There are 57 attributes, of which only 7 are mandatory.
I've removed the issues from the document and placed them in a separate document: issues.doc .pdf. There are very few issues remaining. I've added a few issues from the e-mail since the last telecon.
The actual specifications of each object needs line-by-line review. We did not have time for such review at the 11/08/96 or the 01/08/97 meeting as indicated in the minutes. The group wanted to wait until this specification is re-formatted into a MIB.
The greatly simplified specifications of each object is derived from the ISO DPA attribute specifications in most cases. I've moved the full ISO DPA specifications to a separate documentan Appendix. Revision marks show the agreements reached at the November meeting where we were able to finish the entire document. I've indicated ISSUES in a separate document the text that we have identified as issues but have not resolved. These issues are also listed at the end of the Table of Contents with the page number of the issue. I've also copied in map-summ.doc into another this document and moved it to an appendix so we can more easily compare the Job Monitoring objects with the job submission protocols and keep the object names updated in that summary.
We moved more objects into the Resource Table, now called the Attribute Table, since more than resources are in it. I've not used revision marks for such moves, but only for changes within each description of what had been an object and what now is an enum.
I've moved Ron's re-written introduction into the document.

�INTERNET-DRAFT
Ron Bergman
Dataproducts Corp.
Tom Hastings
Xerox Corporation
Scott Isaacson
Novell, Inc.
Harry Lewis
IBM Corp.
AprilMarch 1997

Job Monitoring MIB - V0.7
<draft-ietf-printmib-job-monitor-00.txt>
Expires Oct 4, 1997

Status of this Memo
This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
To learn the current status of any Internet-Draft, please check the "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).
Abstract
This Internet-Draft specifies a set of 13 SNMP MIB objects for (1) monitoring the status and progress of print jobs (2) obtaining resource requirements before a job is processed, (3) monitoring resource consumption while a job is being processed and (4) collecting resource accounting data after the completion of a job. This MIB is intended to be implemented (1) in a printers or (2) in a server that supports one or more printers. Use of the object set is not limited to printing. However, support for services other than printing is outside the scope of this Job Monitoring MIB. Future extensions to this MIB may include, but are not limited to, fax machines and scanners.
�
TABLE OF CONTENTS
� TOC \o "1-2" \f �1. Introduction	� GOTOBUTTON _Toc385627244 � PAGEREF _Toc385627244 �8��
1.1 Types of Information in the MIB	� GOTOBUTTON _Toc385627245 � PAGEREF _Toc385627245 �8��
1.2 Types of Job Monitoring Applications	� GOTOBUTTON _Toc385627246 � PAGEREF _Toc385627246 �9��
2. Terminology and Job Model	� GOTOBUTTON _Toc385627247 � PAGEREF _Toc385627247 �10��
3. System Configurations for the Job Monitoring MIB	� GOTOBUTTON _Toc385627248 � PAGEREF _Toc385627248 �20��
3.1 Configuration 1 - client-printer	� GOTOBUTTON _Toc385627249 � PAGEREF _Toc385627249 �20��
3.2 Configuration 2 - client-server-printer - agent in the server	� GOTOBUTTON _Toc385627250 � PAGEREF _Toc385627250 �22��
3.2 Configuration 3 - client-server-printer - client monitors printer agent and server	� GOTOBUTTON _Toc385627251 � PAGEREF _Toc385627251 �24��
4. Conformance Considerations	� GOTOBUTTON _Toc385627252 � PAGEREF _Toc385627252 �26��
3.2 Conformance Terminology	� GOTOBUTTON _Toc385627253 � PAGEREF _Toc385627253 �26��
3.3 Agent Conformance Requirements	� GOTOBUTTON _Toc385627254 � PAGEREF _Toc385627254 �26��
3.4 Job Monitoring Application Conformance Requirements	� GOTOBUTTON _Toc385627255 � PAGEREF _Toc385627255 �27��
4. Job Identification	� GOTOBUTTON _Toc385627256 � PAGEREF _Toc385627256 �27��
5. Internationalization Considerations	� GOTOBUTTON _Toc385627257 � PAGEREF _Toc385627257 �28��
6. IANA Considerations	� GOTOBUTTON _Toc385627258 � PAGEREF _Toc385627258 �28��
6.1 IANA Registration of enums	� GOTOBUTTON _Toc385627259 � PAGEREF _Toc385627259 �28��
6.2 IANA Registration of bit string values	� GOTOBUTTON _Toc385627260 � PAGEREF _Toc385627260 �29��
7. Security Considerations	� GOTOBUTTON _Toc385627261 � PAGEREF _Toc385627261 �30��
7.1 Read-Write objects	� GOTOBUTTON _Toc385627262 � PAGEREF _Toc385627262 �30��
7.2 Read-Only Objects In Other User's Jobs	� GOTOBUTTON _Toc385627263 � PAGEREF _Toc385627263 �30��
8. Returning Objects With No Value In Mandatory Groups	� GOTOBUTTON _Toc385627264 � PAGEREF _Toc385627264 �30��
9. Notification and Traps	� GOTOBUTTON _Toc385627265 � PAGEREF _Toc385627265 �30��
10. MIB specification	� GOTOBUTTON _Toc385627266 � PAGEREF _Toc385627266 �30��
Textual conventions for this MIB module	� GOTOBUTTON _Toc385627267 � PAGEREF _Toc385627267 �32��
JmTimeTC - simple time in seconds	� GOTOBUTTON _Toc385627268 � PAGEREF _Toc385627268 �32��
JmTimeIntervalTC - simple time interval in seconds	� GOTOBUTTON _Toc385627269 � PAGEREF _Toc385627269 �32��
JmJobStateTC - job state definitions	� GOTOBUTTON _Toc385627270 � PAGEREF _Toc385627270 �32��
JmAttributeTypeTC - attribute type definitions	� GOTOBUTTON _Toc385627271 � PAGEREF _Toc385627271 �37��
other	� GOTOBUTTON _Toc385627272 � PAGEREF _Toc385627272 �39��
Job State attributes	� GOTOBUTTON _Toc385627273 � PAGEREF _Toc385627273 �39��
jobState (mandatory)	� GOTOBUTTON _Toc385627274 � PAGEREF _Toc385627274 �39��
jobStateAssociatedValue	� GOTOBUTTON _Toc385627275 � PAGEREF _Toc385627275 �39��
jobStateReasons	� GOTOBUTTON _Toc385627276 � PAGEREF _Toc385627276 �40��
numberOfInterveningJobs (mandatory)	� GOTOBUTTON _Toc385627277 � PAGEREF _Toc385627277 �41��
deviceAlertCode (mandatory)	� GOTOBUTTON _Toc385627278 � PAGEREF _Toc385627278 �41��
processingMessage	� GOTOBUTTON _Toc385627279 � PAGEREF _Toc385627279 �41��
Job Identification attributes	� GOTOBUTTON _Toc385627280 � PAGEREF _Toc385627280 �41��
jobName	� GOTOBUTTON _Toc385627281 � PAGEREF _Toc385627281 �41��
jobServiceTypes	� GOTOBUTTON _Toc385627282 � PAGEREF _Toc385627282 �42��
jobOwner	� GOTOBUTTON _Toc385627283 � PAGEREF _Toc385627283 �43��
jobAccountName	� GOTOBUTTON _Toc385627284 � PAGEREF _Toc385627284 �43��
jmJobDeviceNameOrQueueRequested	� GOTOBUTTON _Toc385627285 � PAGEREF _Toc385627285 �43��
jobSourceChannelIndex	� GOTOBUTTON _Toc385627286 � PAGEREF _Toc385627286 �43��
physicalDeviceIndex	� GOTOBUTTON _Toc385627287 � PAGEREF _Toc385627287 �44��
physicalDeviceName	� GOTOBUTTON _Toc385627288 � PAGEREF _Toc385627288 �44��
fileName	� GOTOBUTTON _Toc385627289 � PAGEREF _Toc385627289 �44��
documentName	� GOTOBUTTON _Toc385627290 � PAGEREF _Toc385627290 �44��
jobComment	� GOTOBUTTON _Toc385627291 � PAGEREF _Toc385627291 �44��
Job Parameter attributes	� GOTOBUTTON _Toc385627292 � PAGEREF _Toc385627292 �45��
jobPriority	� GOTOBUTTON _Toc385627293 � PAGEREF _Toc385627293 �45��
jobProcessAfterDateAndTime	� GOTOBUTTON _Toc385627294 � PAGEREF _Toc385627294 �45��
outputBinIndex	� GOTOBUTTON _Toc385627295 � PAGEREF _Toc385627295 �46��
outputBinName (mandatory)	� GOTOBUTTON _Toc385627296 � PAGEREF _Toc385627296 �46��
sides	� GOTOBUTTON _Toc385627297 � PAGEREF _Toc385627297 �46��
documentFormatIndex	� GOTOBUTTON _Toc385627298 � PAGEREF _Toc385627298 �46��
documentFormatEnum	� GOTOBUTTON _Toc385627299 � PAGEREF _Toc385627299 �47��
Resource attributes (requested and consumed)	� GOTOBUTTON _Toc385627300 � PAGEREF _Toc385627300 �47��
jobCopiesRequested	� GOTOBUTTON _Toc385627301 � PAGEREF _Toc385627301 �47��
jobCopiesCompleted	� GOTOBUTTON _Toc385627302 � PAGEREF _Toc385627302 �47��
documentCopiesRequested	� GOTOBUTTON _Toc385627303 � PAGEREF _Toc385627303 �47��
jobKOctetsRequested (mandatory)	� GOTOBUTTON _Toc385627304 � PAGEREF _Toc385627304 �48��
jobKOctetsCompleted (mandatory)	� GOTOBUTTON _Toc385627305 � PAGEREF _Toc385627305 �49��
Impression attributes	� GOTOBUTTON _Toc385627306 � PAGEREF _Toc385627306 �49��
impressionsSpooled	� GOTOBUTTON _Toc385627307 � PAGEREF _Toc385627307 �50��
impressionsSentToDevice	� GOTOBUTTON _Toc385627308 � PAGEREF _Toc385627308 �50��
impressionsInterpreted	� GOTOBUTTON _Toc385627309 � PAGEREF _Toc385627309 �50��
impressionsRequested (mandatory)	� GOTOBUTTON _Toc385627310 � PAGEREF _Toc385627310 �50��
impressionsCompleted (mandatory)	� GOTOBUTTON _Toc385627311 � PAGEREF _Toc385627311 �50��
impressionsCompletedCurrentCopy	� GOTOBUTTON _Toc385627312 � PAGEREF _Toc385627312 �50��
Page attributes	� GOTOBUTTON _Toc385627313 � PAGEREF _Toc385627313 �50��
pagesRequested	� GOTOBUTTON _Toc385627314 � PAGEREF _Toc385627314 �51��
pagesCompleted	� GOTOBUTTON _Toc385627315 � PAGEREF _Toc385627315 �51��
pagesCompletedCurrentCopy	� GOTOBUTTON _Toc385627316 � PAGEREF _Toc385627316 �51��
Sheet attributes	� GOTOBUTTON _Toc385627317 � PAGEREF _Toc385627317 �51��
sheetsRequested	� GOTOBUTTON _Toc385627318 � PAGEREF _Toc385627318 �51��
sheetsCompleted	� GOTOBUTTON _Toc385627319 � PAGEREF _Toc385627319 �51��
sheetsCompletedCurrentCopy	� GOTOBUTTON _Toc385627320 � PAGEREF _Toc385627320 �51��
mediumRequested	� GOTOBUTTON _Toc385627321 � PAGEREF _Toc385627321 �51��
mediumConsumed	� GOTOBUTTON _Toc385627322 � PAGEREF _Toc385627322 �51��
colorantRequestedIndex	� GOTOBUTTON _Toc385627323 � PAGEREF _Toc385627323 �52��
colorantRequestedName	� GOTOBUTTON _Toc385627324 � PAGEREF _Toc385627324 �52��
colorantConsumedIndex	� GOTOBUTTON _Toc385627325 � PAGEREF _Toc385627325 �52��
colorantConsumedName	� GOTOBUTTON _Toc385627326 � PAGEREF _Toc385627326 �52��
Time attributes	� GOTOBUTTON _Toc385627327 � PAGEREF _Toc385627327 �52��
jobSubmissionDateAndTime	� GOTOBUTTON _Toc385627328 � PAGEREF _Toc385627328 �53��
jobSubmissionTime	� GOTOBUTTON _Toc385627329 � PAGEREF _Toc385627329 �53��
jobStartedBeingHeldTime	� GOTOBUTTON _Toc385627330 � PAGEREF _Toc385627330 �53��
jobStartedProcessingDateAndTime	� GOTOBUTTON _Toc385627331 � PAGEREF _Toc385627331 �53��
jobStartedProcessingTime	� GOTOBUTTON _Toc385627332 � PAGEREF _Toc385627332 �53��
jobCompletedDateAndTime	� GOTOBUTTON _Toc385627333 � PAGEREF _Toc385627333 �53��
jobCompletedTime	� GOTOBUTTON _Toc385627334 � PAGEREF _Toc385627334 �54��
processingCPUTime	� GOTOBUTTON _Toc385627335 � PAGEREF _Toc385627335 �54��
JmJobServiceTypesTC - bit encoded job service type definitions	� GOTOBUTTON _Toc385627336 � PAGEREF _Toc385627336 �54��
JmJobStateReasonsTC - additional information about job states	� GOTOBUTTON _Toc385627337 � PAGEREF _Toc385627337 �56��
The General Group (Mandatory)	� GOTOBUTTON _Toc385627338 � PAGEREF _Toc385627338 �68��
jmGeneralJobSetName	� GOTOBUTTON _Toc385627339 � PAGEREF _Toc385627339 �69��
jmGeneralJobPersistence	� GOTOBUTTON _Toc385627340 � PAGEREF _Toc385627340 �69��
jmGeneralAttributePersistence	� GOTOBUTTON _Toc385627341 � PAGEREF _Toc385627341 �69��
jmGeneralNumberOfActiveJobs	� GOTOBUTTON _Toc385627342 � PAGEREF _Toc385627342 �70��
jmGeneralOldestActiveJobIndex	� GOTOBUTTON _Toc385627343 � PAGEREF _Toc385627343 �71��
jmGeneralNewestActiveJobIndex	� GOTOBUTTON _Toc385627344 � PAGEREF _Toc385627344 �71��
The Job ID Group (Mandatory)	� GOTOBUTTON _Toc385627345 � PAGEREF _Toc385627345 �77��
jmJobSubmissionIDIndex	� GOTOBUTTON _Toc385627346 � PAGEREF _Toc385627346 �78��
jmJobSetIndex	� GOTOBUTTON _Toc385627347 � PAGEREF _Toc385627347 �79��
jmJobIndex	� GOTOBUTTON _Toc385627348 � PAGEREF _Toc385627348 �79��
The Job State Group (Mandatory)	� GOTOBUTTON _Toc385627349 � PAGEREF _Toc385627349 �79��
jmJobState	� GOTOBUTTON _Toc385627350 � PAGEREF _Toc385627350 �84��
jmJobStateKOctetsCompleted	� GOTOBUTTON _Toc385627351 � PAGEREF _Toc385627351 �86��
jmJobStateImpressionsCompleted	� GOTOBUTTON _Toc385627352 � PAGEREF _Toc385627352 �86��
jmJobStateAssociatedValue	� GOTOBUTTON _Toc385627353 � PAGEREF _Toc385627353 �86��
The Attribute Group (Mandatory)	� GOTOBUTTON _Toc385627354 � PAGEREF _Toc385627354 �87��
jmAttributeTypeIndex	� GOTOBUTTON _Toc385627355 � PAGEREF _Toc385627355 �89��
jmAttributeInstanceIndex	� GOTOBUTTON _Toc385627356 � PAGEREF _Toc385627356 �89��
jmAttributeValueAsInteger	� GOTOBUTTON _Toc385627357 � PAGEREF _Toc385627357 �90��
jmAttributeValueAsOctets	� GOTOBUTTON _Toc385627358 � PAGEREF _Toc385627358 �90��
11. Job Life Cycle	� GOTOBUTTON _Toc385627359 � PAGEREF _Toc385627359 �95��
12. Bibliography	� GOTOBUTTON _Toc385627360 � PAGEREF _Toc385627360 �97��
13. Author's Addresses	� GOTOBUTTON _Toc385627361 � PAGEREF _Toc385627361 �97��
14. Change History (not to be included in the Internet Draft)	� GOTOBUTTON _Toc385627362 � PAGEREF _Toc385627362 �100��
14.1 Changes to version 0.7, dated 3/13/97 to make version 0.71, dated 3/26/97	� GOTOBUTTON _Toc385627363 � PAGEREF _Toc385627363 �100��
14.2 Changes to version 0.6, dated 1/23/97 to make version 0.7, dated 3/13/97	� GOTOBUTTON _Toc385627364 � PAGEREF _Toc385627364 �100��
15. INDEX	� GOTOBUTTON _Toc385627365 � PAGEREF _Toc385627365 �104��
�
�Job Monitoring MIB
Introduction
The Job Monitoring MIB consists of a 5-object General Group, a 2-object Job Submission ID Group, a 4-object Job State Group, and a 2-object Attribute Group. Each group is a table. The General Group contains general information that applies to all jobs in a job set. The Job Submission ID table maps the job submission ID that the client uses to identify a job to the jmJobIndex that the Job Monitoring Agent uses to identify jobs in the Job State and Attribute tables. The Job State table contains the job state and copies of three salient attributes for each job's current state. The Attribute table consists of multiple entries per job that specify (1) job and document identification and parameters, (2) requested resources, and (3) consumed resources during and after job processing/printing. The Job Monitoring MIB contains a set of objects for (1) monitoring the status and progress of print jobs, (2) obtaining resource requirements before a job is processed, (3) monitoring resource consumption while a job is being processed and (4) collecting resource accounting data after the completion of a job. This MIB is intended to be implemented in printers or a server that supports one or more printers. Use of the object set is not limited to printing. However, support for services other than printing is outside the scope of this Job Monitoring MIB. Future extensions to this MIB may include, but are not limited to, fax machines and scanners.
The Job Monitoring MIB is intended to be instrumented by an agent within a printer or the first server closest to the printer, where the printer is either directly connected to the server only or the printer does not contain the job monitoring MIB agent. It is recommended that implementations place the SNMP agent as close as possible to the processing of the print job. This MIB applies to printers with and without spooling capabilities. This MIB is designed to be compatible with most current commonly-used job submission protocols. In most environments that support high function job submission/job control protocols, like ISO DPA, those protocols would be used to monitor and manage print jobs rather than using the Job Monitoring MIB.
Types of Information in the MIB
The job MIB is intended to provide the following information for the indicated Role Models in the Printer MIB (Refer to RFC 1759, Appendix D - Roles of Users).
User:
Provide the ability to identify the least busy printer. The user will be able to determine the number and size of jobs waiting for each printer. No attempt is made to actually predict the length of time that jobs will take.
Provide the ability to identify the current status of the job (user queries).
Provide a timely notification that the job has completed and where it can be found.
Provide error and diagnostic information for jobs that did not successfully complete.
Operator:
Provide a presentation of the state of all the jobs in the print system.
Provide the ability to identify the user that submitted the print job.
Provide the ability to identify the resources required by each job.
Provide the ability to define which physical printers are candidates for the print job.
Provide some idea of how long each job will take. However, exact estimates of time to process a job is not being attempted. Instead, objects are included that allow the operator to be able to make gross estimates.
Capacity Planner:
Provide the ability to determine printer utilization as a function of time.
Provide the ability to determine how long jobs wait before starting to print.
Accountant:
Provide information to allow the creation of a record of resources consumed and printer usage data for charging users or groups for resources consumed.
Provide information to allow the prediction of consumable usage and resource need.
The MIB supports printers that can contain more than one job at a time, but still be usable for low end printers that only contain a single job at a time. In particular, the MIB supports the needs of Windows and other PC environments for managing low-end networked devices without unnecessary overhead or complexity, while also providing for higher end systems and devices.
Types of Job Monitoring Applications
The Job Monitoring MIB is designed for the following types of monitoring applications:
monitor a single job starting when the job is submitted and finishing a defined period after the job completes. The Job Submission ID table provides the map to find the specific job to be monitored.
monitor all active of the jobs in a queue, which is generalized to a job set. End users may use such a program when selecting a least busy printer, so the MIB is designed for such a program to start up quickly and find the information needed quickly without having to read all (completed) jobs in order to find the active jobs. System operators may also use such a program in which case it would be running for a long period of time and may also be interested in the jobs that have completed. Finally such a program may be co-located with the printer to provide an enhanced console capability.
collect resource usage for accounting or system utilization purposes that copy the completed job statistics to an accounting system. It is recognized that depending on accounting programs to copy MIB data during the job-retention period is somewhat unreliable, since the accounting program may not be running (or may have crashed). Such a program is expected to keep a shadow copy of the entire Job Attribute table including cancelled and completed jobs which the program updates on each polling cycle. Such a program polls at the rate of the persistence of the Attribute table. The design is not optimized to help such an application determine which jobs are completed or canceled. Instead, the application shall query each job that the application's shadow copy shows was not complete or canceled at the previous poll cycle to see if it is now complete or canceled, plus any new jobs that have been submitted.
The MIB provides job resource accounting information after the printer has finished printing the job. This resource accounting information is intended to be used by:
A management station that is co-located with the printer to provide an enhanced console capability.
End user job monitoring programs that provide status on progress and completion of jobs during the complete life cycle of the job, including a defined period after the job completes.
System accounting programs that copy the completed job statistics to an accounting system. It is recognized that depending on accounting programs to copy MIB data during the job-retention period is somewhat unreliable, since the accounting program may not be running (or may have crashed).
The MIB provides a set of objects that represent a compatible subset of job and document attributes of the ISO DPA standard, so that coherence is maintained between the two protocols and information presented to end users and system operators. However, the job monitoring MIB is intended to be used with printers that implement other job submitting and management protocols, such as IEEE 1284.1 (TIPSI), as well as with ones that do implement ISO DPA. So nothing in the job monitoring MIB shall require implementation of the ISO DPA protocol.
The MIB is designed so that an additional MIB(s) can be specified in the future for monitoring multi-function (scan, FAX, copy) jobs as an augmentation to this MIB.
Terminology and Job Model
This section defines the terms that are used in this specification and the general model for jobs.
NOTE - Existing systems use conflicting terms, so these terms are drawn from the ISO 10175 Document Printing Application (DPA) standard. For example, PostScript systems use the term session for what we call a job in this specification and the term job to mean what we call a document in this paper. PJL systems use the term ..
A job is a unit of work whose results are expected together without interjection of unrelated results. A client is able to specify job instructions that apply to the job as a whole. Proscriptive instructions specify how, when, and where the job is to be printed. Descriptive instructions describe the job. A job contains one or more documents.
A job set is a set of jobs that are queued and scheduled together according to a specified scheduling algorithm for a specified device or set of devices. For implementations that embed the SNMP agent in the device, the MIB job set normally represents all the jobs known to the device, so that the implementation only implements a single job set which may be identified with a hard-coded value 1. If the SNMP agent is implemented in a server that controls one or more devices, each MIB job set represents a job queue for (1) a specific device or (2) set of devices, if the server uses a single queue to load balance between several devices. Each job set is disjoint; no job shall be represented in more than one MIB job set.
A document is a sub-section within a job. A document contains print data and document instructions that apply to just the document. The client is able to specify document instructions separately for each document in a job. Proscriptive instructions specify how the document is to be processed and printed by the server. Descriptive instructions describe the document. Server implementation of more than one document per job is optional.
A client is the network entity that end users use to submit jobs to spoolers, servers, or printers and other devices, depending on the configuration, using any job submission protocol.
A server is a network entity that accepts jobs from clients and in turn submits the jobs to printers and other devices. A server may be a printer supervisor control program, or a print spooler.
A device is a hardware entity that (1) interfaces to humans in human perceptible means, such as produces marks on paper, scans marks on paper to produce an electronic representations, or writes CD-ROMs or (2) interfaces to a network, such as sends FAX data to another FAX device.
A printer is a device that puts marks on media.
A supervisor is a server that contains a control program that controls a printer or other device. A supervisor is a client to the printer or other device.
A spooler is a server that accepts jobs, spools the data, and decides when and on which printer to print the job. A spooler is a client to a printer or a printer supervisor, depending on implementation.
Spooling is the act of a device or server of (1) accepting jobs and (2) writing the job's attributes and document data on to secondary storage.
Queuing is the act of a device or server of ordering (queuing) the jobs for the purposes of scheduling the jobs to be processed.
A monitor or job monitoring application is the network entity that End Users, System Operators, Accountants, Asset Managers, and Capacity Planners use to monitor jobs using SNMP. A monitor may be either a separate application or may be part of the client that also submits jobs.
An agent is the network entity that accepts SNMP requests from a monitor and implements the Job Monitoring MIB.
A proxy is an agent that acts as a concentrator for one or more other agents by accepting SNMP operations on the behalf of one or more other agents, forwarding them on to those other agents, gathering responses from those other agents and returning them to the original requesting monitor.
A user is a person that uses a client or a monitor.
An end user is a user that uses a client to submit a print job.
A system operator is a user that uses a monitor to monitor the system and carries out tasks to keep the system running.
A system administrator is a user that specifies policy for the system.
A job instruction is an instruction specifying how, when, or where the job is to be processed. Job instructions may be passed in the job submission protocol or may be embedded in the document data or a combination depending on the job submission protocol and implementation.
A document instruction is an instruction specifying how to process the document. Document instructions may be passed in the job submission protocol separate from the actual document data, or may be embedded in the document data or a combination, depending on the job submission protocol and implementation.
An SNMP information object is a name, value-pair that specifies an action, a status, or a condition in an SNMP MIB. Objects are identified in SNMP by an OBJECT IDENTIFIER.
An attribute is a name, value-pair that specifies an instruction, a status, or a condition ofin a job or a document that has been submitted to a server or device in a job submission protocol. A particular n attribute need not be present in each job instance. In other words, attributes are present in a job instance only when there is a need to express the value, either because (1) the client supplied a value in the job submission protocol, (2) the document data contained an embedded attribute, or (3) the server or device supplied a default value. The term "attribute" will be used when discussing a job instruction or a document instruction in a job submission protocol that is not embedded in the document data. An agent shall represent an attribute asThe term "attribute" will also be used for an entry (row) in the attribute table in this MIB in which entries are present only when necessary. Attributes are identified in this MIB by an enum.The term "information object" or "object" for short will be used in discussing the MIB. In other words, the server or printer accepts jobs via a job submission protocol that contains job and document attributes and the SNMP agent instruments the job by returning the equivalent, possibly transformed, job and document attributes as MIB objects in response to SNMP Get requests. The agent may also represent job and document instructions that are embedded in the document data as MIB objects, depending on implementation.
Job monitoring using SNMP is (1) identifying jobs within the serial streams of data being processed by the server, printer or other devices, (2) creating "rows" in the job table for each job, and (3) recording information, known by the agent, about the processing of the job in that "row".
Job accounting is recording what happens to the job during the processing and printing of the job.
The job model has the following states:
�Table: Job Object Life Cycle Summary
State�Summary Description��unknown�The state of the job is not known to the agent or is unknowable, or the job is not yet created or has just been purged.��preProcessing�The job has been created on the server or device but the submitting client is in the process of adding additional job components and no documents have started processing. The job maybe in the process of being checked by the server/device for attributes, defaults being applied, a device being selected, etc.��held�The job is not yet a candidate for processing for any number of reasons. The reasons are represented as bits in the jmJobStateReasons object. Some reasons are used in other states to give added information about the job state. See the JmJobStateReasonsTC textual convention for the specification of each reason and in which states the reasons may be used.��pending�The job is a candidate for processing, but is not yet processing.��processing�The job is using one or more document transforms which include purely software processes, such as interpreting a PDL, and hardware devices.��needsAttention�The job is using one or more devices, but has encountered a problem with at least one device that requires human intervention before the job can continue using that device. Examples include running out of paper or a paper jam.
Usually devices indicate their condition in human readable form locally at the device. The management application can obtain more complete device status remotely by querying the appropriate device MIB using the job's jmDeviceIndex object in the Job Monitoring MIB.
NOTE - Instead of the needsAttention job state, ISO DPA uses the multi-valued printer-state-of-printers-assigned job attribute, so that the state of each device that a job is using can be accurately represented. However, for the Job Monitoring MIB, the simpler approach is used of adding a single needsAttention job state if any device that the job is using needs attention and relying on the device MIB for more information.��paused�The job has been indefinitely suspended by a client issuing an operation to suspend the job so that other jobs may proceed using the same devices. The client may issue an operation to resume the paused job at any time, in which case the server or printer places the job in the held or pending states and the job is eventually resumed at the point where the job was paused.��interrupted�The job has been interrupted while processing by a client issuing an operation that specifies another job to be run instead of the current job. The server or printer will automatically resume the interrupted job when the interrupting job completes.��terminating�The job is in the process of being terminated by the server or printer, either because the client canceled the job or because a serious problem was encountered by a document transform while processing the job. The job's jmJobStateReasons object shall contain the reasons that the job was terminated.��retained�The job is being retained by the server or printer after processing and all of the media have been successfully stacked in the output bin(s).
The job (1) has completed successfully or with warnings or errors, (2) has been aborted while printing by the server/device, or (3) has been cancelled by the submitting user or operator before or during processing. The job's jmJobStateReasons object shall contain the reasons that the job has entered the retained state.
While in the retained state, all of the job's document data (and submitted resources, if any) are retained by the server or device; thus a client could issue an operation to resubmit the job (or a copy of the job) while the job is in the retained state.
The retained state is conditionally mandatory. Implementations that do not retain jobs after they are finished processing such that the client could request that the job be repeated (or resubmitted), need not implement the retained state.��completed�The job has (1) completed processing, (2) all of the media have been successfully stacked in the output bin(s) and (3) the server/device is keeping the job in summary form for a site-settable period for purposes of aiding operators and users to determine the disposition of users' jobs.
The job (1) has completed successfully or with warnings or errors, (2) has been aborted while printing by the server/device, or (3) has been cancelled by the submitting user or operator before or during processing. The job's jmJobStateReasons object shall contain the reasons that the job has entered the completed state.
While in the completed state, a job's document data (and submitted resources if any) need not be retained by the server; thus a job in the completed state could not be reprinted. The length of time that a job may be in this state, before transitioning to unknown, is implementation-dependent. However, servers that implement the completed job-state shall retain all of the job's Job Monitoring MIB objects, except the jmQueueGroup objects, so that a management application accounting program can copy them to an accounting log.����There are two approaches that implementers may use to address the problems of the end-user using the Job Monitoring MIB:
The client also supports SNMP and the Job Monitoring MIB for status/notification to the submitting user
The monitor supports SNMP and the Job Monitoring MIB for status/notification to any user, including the job-submitting end user; for example, the Windows Print Manager.

The following diagram illustrates the relationships between the defined entities.

 +-------+ +--------+
 |monitor| | client |
 +---#---+ +-----+--+
 # |
 SNMP # | DPA, TIPSI, or
 # | other job submission
 +==+===#===+==+ | protocol
 | | agent | | |
 | +-------+ | |
 | printer <--------+
 | or | Print Job Delivery Channel
 | server |
 +=============+
Figure- Relationship between client, printer/server, management station, and agent
�
 system printer asset user user user
 manager operator manager
 O O O O O O
 /|\ /|\ /|\ /|\ /|\ /|\
 / \ / \ / \ / \ / \ / \
 | | | | | |
+---------+ +-------+ +-------+ +-------+ +-----------+ +-----------+
|configur-| |printer| | asset | |printer| | user | | user |
|ator | |manager| |manager| |browser| |application| |application|
+---------+ +-------+ +-------+ +-------+ +-----------+ +-----------+
 ^ ^ ^ ^ | |
 |R/W |R/W |R |R +-----------+ +-----------+
 | | | | | spooler | | spooler |
 | | | | +-----------+ +-----------+
 | | | | | |
 | | | | +-----------+ +-----------+
 | | | | |supervisor | |supervisor |
 | | | | +-----------+ +-----------+
 | | | | ^ ^ ^ ^
 | | | | |R |R/W |R |R/W
 v v | | | | | |
== | ===== |
 | print| print|
 |SNMP data| data|
 +-----+ +-------+ PCL| PCL|
 | MIB |<------>| agent | PostScript| PostScript|
 +-----+ +-------+ NPAP| NPAP|
 |unspecified etc.| etc.|
 +=============+ +-----------------+ | |
 | |--|channel/Interface|<--+ |
 | | +-----------------+ |
 | PRINTER | |
 | | +-----------------+ |
 | |--|channel/Interface|<----------------+
 +=============+ +-----------------+
Figure - One Printer's View of the Network (extracted from RFC 1759)
�
System Configurations for the Job Monitoring MIB
This section enumerates the threetwo configurations for which the Job Monitoring MIB is intended to be used. The diagram in the Printer MIB entitled: "One Printer's View of the Network"[1] is assumed for this MIB as well. Please refer to that diagram to aid in understand the following system configurations. To simplify the pictures, the devices are shown as printers. See Goals section.
Configuration 1 - client-printer
In the client-printer configuration, the client(s) submit jobs directly to the printer, either by some direct connect, or by network connection. The client-printer configuration can accommodate multiple job submitting clients in either of two ways:
if each client relinquishes control of the Print Job Delivery Channel after each job (or after a number of jobs)
if the printer supports more than one Print Job Delivery Channel
The job submitting client and/or monitoring application monitor jobs by communicatinges directly with an agent that is part of the printer. The agent in the printer shall keep the job in the Job Monitoring MIB as long as the job is in the Printer, and longer in order to implement the completed state in which monitoring programs can copy out the accounting data from the Job Monitoring MIB.

 all end-user ######## SNMP query
 +-------+ +--------+ ---- job submission
 |monitor| | client |
 +---#---+ +--#--+--+
 # # |
 # ############ |
 # # |
 +==+===#=#=+==+ |
 | | agent | | |
 | +-------+ | |
 | PRINTER <--------+
 | | Print Job Delivery Channel
 | |
 +=============+
Figure � SEQ Figure * ARABIC �1� - Configuration 1 - client-printer - agent in the printer
The Job Monitoring MIB is designed to support the following relationships (not shown in � REF _Ref377543804 * MERGEFORMAT �Figure 1�):
Multiple clients may submit jobs to a printer.
Multiple clients may monitor a printer.
Multiple monitors may monitor a printer.
A client may submit jobs to multiple printers.
A monitor may monitor multiple printers.
�Configuration 2 - client-server-printer - agent in the server
In the client-server-printer configuration 2, the client(s) submit jobs to an intermediate server by some network connection, not directly to the printer. While configuration 2 is included, the design center for this MIB is configurations 1 and 3,
The job submitting client and/or monitoring application monitor job by communicatinges directly with:
a Job Monitoring MIB agent that is part of the server (or a front for the server)
There is no SNMP Job Monitoring MIB agent in the printer in configuration 2, at least that the client or monitor are aware. In this configuration, the agent shall return the current values of the objects in the Job Monitoring MIB both for jobs the server keeps and jobs that the server has submitted to the printer. In configuration 2, the server keeps a copy of the job during the time that the server has submitted the job to the printer. Only some time after the printer completes the job, shall the server remove the representation of the job from the Job Monitoring MIB in the server. The agent need not access the printer, except when a monitor queries the agent using an SNMP Get for an object in the Job Monitoring MIB. Or the agent can subscribe to the notification events that the printer generates and keep the Job Monitoring MIB update to date. The agent in the server shall keep the job in the Job Monitoring MIB as long as the job is in the Printer, and longer in order to implement the completed state in which monitoring programs can copy out the accounting data from the Job Monitoring MIB.

 all end-user
 +-------+ +----------+
 |monitor| | client | ######## SNMP query
 +---+---# +---#----+-+ **** non-SNMP cntrl
 # # | ---- job submission
 # # |
 # # |
 #=====#=+==v==+
 | agent | |
 +-------+ |
 | server |
 +----+-----+--+
 control * |
 ********** |
 * |
 +========v====+ |
 | | |
 | | |
 | PRINTER <---------+
 | | Print Job Delivery Channel
 | |
 +=============+
Figure � SEQ Figure * ARABIC �2� - Configuration 2 - client-server-printer - agent in the server
The Job Monitoring MIB is designed to support the following relationships (not shown in � REF _Ref377544204 * MERGEFORMAT �Figure 2�):
Multiple clients may submit jobs to a server.
Multiple clients may monitor a server.
Multiple monitors may monitor a server.
A client may submit jobs to multiple servers.
A monitor may monitor multiple servers.
Multiple servers may submit jobs to a printer.
Multiple servers may control a printer.
�Configuration 3 - client-server-printer - client monitors printer agent and server
In the client-server-printer configuration 3, the client(s) submit jobs to an intermediate server by some network connection, not directly to the printer.
The job submitting client and/or monitoring application monitor jobs by communicatinges directly with:
the server using somea non-SNMP protocol to monitor jobs in the server that does not contain the Job Monitoring MIB AND
a Job Monitoring MIB agent that is part of the printer to monitor jobs after the server passes the jobs to the printer. In such configurations, the server deletes its copy of the job from the server after submitting the job to the printer usually almost immediately (before the job does much processing, if any).
There is no SNMP Job Monitoring MIB agent in the server in configuration 3, at least that the client or monitor are aware. In this configuration, the agent (in the printer) shall keep the values of the objects in the Job Monitoring MIB that the agent implements updated for a job that the server has submitted to the printer. The agent shall obtain information about the jobs submitted to the printer from the server (either in the job submission protocol, in the document data, or by direct query of the server), in order to populate some of the objects the Job Monitoring MIB in the printer. The agent in the printer shall keep the job in the Job Monitoring MIB as long as the job is in the Printer, and longer in order to implement the completed state in which monitoring programs can copy out the accounting data from the Job Monitoring MIB.

 all end-user
 +-------+ +----------+
 |monitor| | client | ######## SNMP query
 +---+---* +---*----+-+ **** non-SNMP query
 # * * | ---- job submission
 # * * |
 # * * |
 # *=====v====v==+
 # | |
 # | server |
 # | |
 # +----#-----+--+
 # optional# |
 # ########## |
 # # |
 +==+=v===v=+==+ |
 | | agent | | |
 | +-------+ | |
 | PRINTER <---------+
 | | Print Job Delivery Channel
 | |
 +=============+
Figure � SEQ Figure * ARABIC �3� - Configuration 3 - client-server-printer - client monitors printer agent and server
The Job Monitoring MIB is designed to support the following relationships (not shown in � REF _Ref382977456 * MERGEFORMAT �Figure 3�):
Multiple clients may submit jobs to a server.
Multiple clients may monitor a server.
Multiple monitors may monitor a server.
A client may submit jobs to multiple servers.
A monitor may monitor multiple servers.
Multiple servers may submit jobs to a printer.
Multiple servers may control a printer.
�Conformance Considerations
In order to achieve interoperability between job monitoring applications and job monitoring agents, this specification includes the conformance requirements for both monitoring applications and agents.
Conformance Terminology
This specification uses the verbs: "shall", "should", "may", and "need not" to specify conformance requirements as follows:
"shall": indicates an action that the subject of the sentence must implement in order to claim conformance to this specification
"may": indicates an action that the subject of the sentence does not have to implement in order to claim conformance to this specification, in other words that action is an implementation option
"need not": indicates an action that the subject of the sentence does not have to implement in order to claim conformance to this specification. The verb "need not" is used instead of "may not", since "may not" sounds like a prohibition.
"should": indicates an action that is recommended for the subject of the sentence to implement, but is not required, in order to claim conformance to this specification.
Agent Conformance Requirements
An agent shall implement all mandatory groups in this specification. An agent shall implement conditionally mandatory groups, if the server or device that the agent is instrumenting has the features represented by the objects in the conditionally mandatory group. This section also lists the objects from other IETF MIB specifications that are mandatory for conformance by an agent to this Job Monitoring MIB specification.
MIB II System Group objects
The Job Monitoring MIB agent shall implement all objects in the system group of MIB-II (RFC 1213), whether the Printer MIB is implemented or not.
MIB II Interface Group objects
The Job Monitoring MIB agent shall implement all objects in the Interfaces Group of MIB-II (RFC 1213), whether the Printer MIB is implemented or not.
Printer MIB objects
If the agent is instrumenting a device that is a printer, the agent shall implement all of the mandatory objects in the Printer MIB and all the objects in other MIBs that conformance to the Printer MIB requires, such as the Host Resources MIB. If the agent is instrumenting a server that controls one or more networked printers, the agent need not implement the Printer MIB and need not implement the Host Resources MIB.
Job Monitoring Application Conformance Requirements
A job monitoring application (monitor) is a management or client application that uses SNMP to access the agent that implements this Job Monitoring MIB. A job monitoring application shall accept all objects in all mandatory and conditionally mandatory groups that are required to be implemented by an agent according to Section � REF _Ref378303175 \n �3.3� and shall either present them to the user or ignore them.
A job monitoring application shall accept all enum values and bit vector bits specified in this standard and additional ones that may be registered with IANA and shall either present them to the user or ignore them. See Section � REF _Ref377982386 \n �6� entitled "� REF _Ref377982386 * MERGEFORMAT �IANA Considerations�" on page � PAGEREF _Ref377982386 �28�.
Job Identification
There are a number of attributes that permit a user, operator or system administrator to identify jobs of interest, such as jobOwner, jobName, etc. In addition, there is a The purpose of the Job Submission ID object that allows Identification objecta s is to allow the monitoring application user, operator, or the system administrator to quickly locate and identify a particular the jobs of interest that was submitted from a particular client by the user invoking the monitoring application. The Job Monitoring MIB needs to provide for identification of the job at both sides of the job submission process. The primary identification point is must be at the client side. The Job Submission IDclient side identifiers allows the monitoring application user to identify the job of interest from all the jobs currently "known" by the server or device. The Job Submission IDclient side identifiers can be assigned by either the client's local system or a downstream server or device. The point of assignment will be determined by the job submission protocol in use. Two client-side objects are provided: jmJobIdName and jmJobIdNumber so that both textual identifiers and numeric identifiers can be represented, depending on the job submission protocol. The intent is that the agent shall provide the same values for these two client-side objects as the user is provided for by the job submission protocol that happens to be in use. The client-side job identifiers in combination should provide the user and operator with unique job identifications.
The server/device-side identifier, called the jmJobIndex object, will be assigned by the server or device that accepts the jobs from submitting clients. The MIB agent shall use the job identifier assigned by the server or device to the job as the value of the jmJobIndex object that defines the table rows (there are multiple tables) that contain the information relating to the job. This object allows the interested party to obtain all objects desired that relate to this job. The MIB provides a mapping table that maps each Job Submission ID to the corresponding jmJobIndex value, so that an application can determine the correct value for the jmJobIndex value for the job of interest in a single Get operation. See the jmJobIDGroup on page � PAGEREF jmJobIDGroup �77�.
The jmJobName attributeobject provides a name that the user supplies an a job attribute with the job. It is not necessarily unique, even for one user, let alone across users.
Internationalization Considerations
There are a number of objects in this MIB that are represented as coded character sets. The data type for such objects is OCTET STRING. Such objects could be in different coded character sets and could be localized in the language and country, i.e., could be localized. However, for the Job Monitoring MIB, most of the objects are supplied as job attributes by the client that submits the job to the server or device and so are represented in the coded character set specified by that client. Therefore, the agent is not able to provide for different representations depending on the locale of the server, device, or user of the job monitoring application. The only exception is job submission protocols that pass job or document attributes as OBJECT IDENTIFIERS or enums. For those job and document attributes, the agent shall represent the corresponding objects in the Job Monitoring MIB as coded character sets in the current (default) locale of the server or printer as established by the system administrator or the implementation.
For simplicity, this specification assumes that the clients, job monitoring applications, servers, and devices are all running in the same locale. However, this specification allows them to run in any locale, including locales that use two-octet coded character sets, such as ISO 10646 (Unicode). Job monitors applications are expected to understand the coded character set of the client (and job), server, or device. No special means is provided for the monitor to discover the coded character set used by jobs or by the server or device. This specification does not contain an object that indicates what locale the server or device is running in, let alone contain an object to control what locale the agent is to use to represent coded character set objects.
This MIB also contains objects that are represented using the DateAndTime textual convention from SNMPv2-TC (RFC 1903). The job management application shall display such objects in the locale of the user running the monitoring application.
IANA Considerations
During the development of this standard, the Printer Working Group (PWG) working with IANA will register additional enums and bit strings while the standard is in the proposed and draft states according to the procedures described in this section. IANA will handle registration of additional enums and bit strings after this standard is approved in cooperation with an IANA-appointed registration editor from the PWG according to the procedures described in this section:
IANA Registration of enums
This specification uses textual conventions to define enumerated values (enums). Enumerations (enums) are sets of symbolic values defined for use with one or more objects. All enumeration sets are assigned a symbolic data type name (textual convention). As a convention the symbolic name ends in "TC" for textual convention. These enumerations are listed at the beginning of the MIB module specification.
This working group has defined several type of enumerations for use in the Job Monitoring MIB and the Printer MIB (see RFC 1759). These enumerations differ in the method employed to control the addition of new enumerations. Throughout this document, references to "type n enum", where n can be 1, 2 or 3 can be found in the various tables. The definitions of these types of enumerations are:
Type 1 enumeration: All the values are defined in the Job Monitoring MIB specification (RFC for the Job Monitoring MIB). Additional enumerated values require a new RFC.
NOTE - There are no type 1 enums in the current draft.
Type 2 enumeration: An initial set of values are defined in the Job Monitoring MIB specification. Additional enumerated values are registered after review by this working group. The initial versions of the MIB will contain the values registered so far. After the MIB is approved, additional values will be registered through IANA after approval by this working group.
The following type 2 enums are contained in the current draft (see table of contents Table of Textual-Conventions):
JmJobServiceTypesTC
JmJobStateTC
JmAttributeTypeTC
Type 3 enumeration: An initial set of values are defined in the Job Monitoring MIB specification. Additional enumerated values are registered without working group review. The initial versions of the MIB will contain the values registered so far. After the MIB is approved, additional values will be registered through IANA without approval by this working group.
NOTE - There are no type 3 enums in the current draft.
IANA Registration of bit string values
This draft contains the following bit string textual-conventions:
JmJobStateReasonsTC
The jobStateReasons attribute is defined as a bit string using the JmJobStateReasonsTC textual-convention that is represented by an OCTET STRING(SIZE(0..63)). Bits in the bit string are assigned starting with the most significant bit in the most significant octet which is called bit 1. Bit 2 is the next most significant bit in the most significant octet, etc. Bit 9 is the most significant bit in the second most significant octet, etc., up to the maximum bit: 504 (= 8 x 63). The registration of JmJobStateReasonsTC bit values shall follow the procedures for a type 2 enum as specified in Section � REF _Ref382966579 \n �6.1�
Security Considerations
Read-Write objects
All objects are read-only greatly simplifying the security considerations. If another MIB augments this MIB, that MIB might allow objects in this MIB to be modified. However, that MIB shall have to support the required access control in order to achieve security, not this MIB.
Read-Only Objects In Other User's Jobs
The security policy of some sites may be that unprivileged users can only get the objects from jobs that they submitted, plus a few minimal objects from other jobs, such as the jobKOctetsRequestedTotal and jobKOctetsCompleted attributes, so that a user can tell how busy a printer is. Other sites might allow all unprivileged users to see all objects of all jobs. It is up to the agent to implement any such restrictions based on the identification of the user making the SNMP request. This MIB does not require, nor does it specify how, such restrictions would be implemented. A monitoring application should enforce the site security policy with respect to returning information to an unprivileged end user that is using the monitoring application to monitor jobs that do not belong to that user, i.e., the jobOwner attribute in the jmAttributeTable does not match the user's user name. See the JmAttributeTypeTC textual convention on page � PAGEREF impressionsCompleted �50� and the jmAttributeTable.
An operator is a privileged user that would be able to see all objects of all jobs, independent of the policy for unprivileged users.
Returning Objects With No Value In Mandatory Groups
If an object in a mandatory group does not have an instrumented value for a particular job submission protocol or the job submitting client did not supply a value (and the accepting server or device does not supply a default), this MIB requires that the agent shall follow the normal SNMP practice of returning a distinguished value, such as a zero-length string, a unknown(2) for an enum, or a (-2) for an integer value.
Notification and Traps
This MIB does not specify any traps. For simplicity, management applications are expected to poll for status. The resulting network traffic is not expected to be significant.
MIB specification
The following pages constitute the actual Job Monitoring MIB.
�Job-Monitoring-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, experimental, Integer32�
FROM SNMPv2-SMI��TEXTUAL-CONVENTION, DateAndTime�FROM SNMPv2-TC��MODULE-COMPLIANCE, OBJECT-GROUP�FROM SNMPv2-CONF;��-- The following textual-conventions are needed
-- to implement certain attributes, but are not
-- needed to compile this MIB. They are
-- provided here for convenience:
-- DateAndTime
-- PrtAlertCodeTC, PrtInterpreterLangFamilyTC�

FROM SNMPv2-TC
FROM Printer-MIB��
-- Use the experimental (54) OID assigned to the Printer MIB before it
-- was published as RFC 1759.
-- Upon publication of the Job Monitoring MIB as an RFC, delete this
-- comment and the line following this comment and change the
-- reference of { temp 104 } (below) to { mib-2 X }.
-- This will result in changing:
-- 1 3 6 1 3 54 jobmonmib(105) to:
-- 1 3 6 1 2 1 jobmonmib(X)
-- This will make it easier to translate prototypes to
-- the standard namespace because the lengths of the OIDs won't
-- change.
temp OBJECT IDENTIFIER ::= { experimental 54 }

jobmonmib MODULE-IDENTITY
LAST-UPDATED "97040403140000Z"
ORGANIZATION "IETF Printer MIB Working Group"
CONTACT-INFO
"Tom Hastings
Postal: Xerox Corp.
 Mail stop ESAE-231
 701 S. Aviation Blvd.
 El Segundo, CA 90245

Tel: (301)333-6413
Fax: (301)333-5514
E-mail: hastings@cp10.es.xerox.com"
DESCRIPTION
"The MIB module for monitoring job in servers, printers, and other devices.

File: jmp-mib.doc, .pdf, .txt, .mib
Version: 0.871"
::= { temp 105 }

�
� TC "Textual conventions for this MIB module" \I 2 �
-- Textual conventions for this MIB module

� TC "JmTimeTC - simple time in seconds" \I 3 �
JmTimeTC� XE JmTimeTC - simple time definitions� ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The simple time at which an event took place. The units are in seconds since the system was booted.

NOTE - JmTimeTC is defined in units of seconds, rather than 100ths of seconds, so as to be simpler for agents to implement (even if they have to implement the 100ths of a second to comply with MIB-II.)

NOTE - JmTimeTC is defined as an Integer32 so that it can be used as a value of an attribute, i.e., as a value of the jmAttributeValueAsInteger object (see page � PAGEREF jmAttributeValueAsInteger �90�). The TimeStamp textual-convention defined in SMIv2 is defined as an APPLICATION 3 IMPLICIT INTEGER tag, not an Integer32, so cannot be used in this MIB as one of the values of jmAttributeValueAsInteger."
SYNTAX INTEGER(0..2147483647)

� TC "JmTimeIntervalTC - simple time interval in seconds" \I 3 �
JmTimeIntervalTC� XE JmTimeIntervalTC - simple time interval definitions� ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A period of time, measured in units of seconds.

NOTE - JmTimeIntervalTC is defined in the same units as JmTimeTC, namely seconds.

NOTE - JmTimeIntervalTC is defined as an Integer32 so that it can be used as a value of an attribute which is represented as the value of the jmAttributeValueAsInteger object (see page � PAGEREF jmAttributeValueAsInteger �90�). The TimeIntervalTC textual-convention defined in SNMP-TC is defined as an Integer32, so it could be used in this MIB, except that TimeIntervalTC is defined in 100ths of a second, not in units of seconds."
SYNTAX INTEGER(0..2147483647)

� TC "JmJobStateTC - job state definitions" \I 3 �
JmJobStateTC� XE JmJobStateTC - job state definitions� ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The current state of the job (pending, processing, held, etc.)

Management applications shall be prepared to receive all the standard job states. Servers and devices are not required to generate all job states, only those which are appropriate for the particular implementation. However, the following states are mandatory for a server or device implementation:

 processing(5)
 needsAttention(7)
 canceled(8)
 completed(9)

See Section � REF _Ref385620262 \n �11� entitled '� REF _Ref385620269 * MERGEFORMAT �Job Life Cycle�' on page � PAGEREF _Ref385620274 �95� for additional job state semantics, legal job state transitions, and implementation considerations.

A companion textual convention (JmJobStateReasonsTC) and corresponding attribute (jobStateReasons) provide additional information about job states. While the job states cannot be added to without impacting deployed clients, it is the intent that additional JmJobStateReasonsTC enums can be defined without impacting deployed clients. In other words, the JmJobStateReasonsTC is intended to be extensible. See page � PAGEREF JmJobStateReasonsTC �56�.

The following job state standard values are defined by adding (+2) to the last arc of the ISO DPA OBJECT IDENTIFIER value of the job-current-state job attribute:"

-- This is a type 2 enumeration. See Section � REF _Ref382968143 \n �6.1� on page � PAGEREF _Ref382968152 �28�.
SYNTAX INTEGER {
other(1),�--
--�The job state is not one of the defined states.
��unknown(2),�--
--�The job state is not known, or is indeterminate.
��preProcessing(3),�--
--
--
--
--
--
--
--�The job has been created on the server or device but the submitting client is in the process of adding additional job components and no documents have started processing. The job maybe in the process of being checked by the server/device for attributes, defaults being applied, a device being selected, etc.
��held(312),�--
--
--
--
--
--
--
--
--
--�The job is not yet a candidate for processing for any number of reasons. The reasons are represented as bits in the jobStateReasons attribute. Some reasons are used in other states to give added information about the job state. See the JmJobStateReasonsTC textual convention for the specification of each reason and in which states the reasons may be used.
��pending(46),�--
--�The job is a candidate for processing, but is not yet processing.
��processing(57),�--
--
--
--�The job is using one or more document transforms which include purely software processes, such as interpreting a PDL, and hardware devices, but is not yet making marks on a medium. If an implementation does not distinguish between processing and printing, then the processing state shall be implemented.
��printing(6)�--
--�The job is printing, i.e., making marks on a medium. If an implementation does not distinguish between processing and printing, then the processing state shall be implemented.
��needsAttention(79),�--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--�The job is using one or more devices, but has encountered a problem with at least one device that requires human intervention before the job can continue using that device. Examples include running out of paper or a paper jam.

Usually devices indicate their condition in human readable form locally at the device. The management application can obtain more complete device status remotely by querying the appropriate device MIB using the job's jmDeviceIndex object in the Job Monitoring MIB.

NOTE - Instead of the needsAttention job state, ISO DPA uses the multi-valued printer-state-of-printers-assigned job attribute, so that the state of each device that a job is using can be accurately represented. However, for the Job Monitoring MIB, the simpler approach is used of adding a single needsAttention job state if any device that the job is using needs attention and relying on the device MIB for more information.
��paused(13),�--
--
--
--
--
--
--
--
--
--�The job has been indefinitely suspended by a client issuing an operation to suspend the job so that other jobs may proceed using the same devices. The client may issue an operation to resume the paused job at any time, in which case the server or printer places the job in the held or pending states and the job is eventually resumed at the point where the job was paused.
��interrupted(8),�--
--
--
--
--
--
--�The job has been interrupted while processing by a client issuing an operation that specifies another job to be run instead of the current job. The server or printer will automatically resume the interrupted job when the interrupting job completes.
��canceledterminating(814),�--
--
--
--
--
--
--
--�The job is in the process of being terminated by the server or device or has completed terminating the jobprinter, either because the client canceled the job or because a serious problem was encountered by a document transform while processing the job. The job's jobStateReasons attribute shall contain the reasons that the job was canceledterminated. The job shall remain in the canceled state for the same period of time as if the job had completed, before transiting to the unknown state. See the completed state description.
��retained(11),�--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--�The job is being retained by the server or printer after processing and all of the media have been successfully stacked in the output bin(s).

The job (1) has completed successfully or with warnings or errors, (2) has been aborted while printing by the server/device, or (3) has been cancelled by the submitting user or operator before or during processing. The job's jmJobStateReasons object shall contain the reasons that the job has entered the retained state.

While in the retained state, all of the job's document data (and submitted resources, such as fonts, logos, and forms, if any) are retained by the server or device; thus a client could issue an operation to resubmit the job (or a copy of the job) while the job is in the retained state.

The retained state is conditionally mandatory. Implementations that do not retain jobs after they are finished processing such that the client could request that the job be repeated (or resubmitted), need not implement the retained state.
��completed(917)�--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
�The job has (1) completed after processing/printing and all of the media have been successfully stacked in the output bin(s) and (2) the server/device is keeping the job in summary form for a site-settable period for purposes of aiding operators and users to determine the disposition of users' jobs.

The job (1) has completed successfully or with warnings or errors, (2) has been aborted while printing by the server/device, or (3) has been cancelled by the submitting user or operator before or during processing. The job's jobStateReasons attributeobject shall contain the reasons that the job has entered the completed state.

While in the completed state, a job's document data (and submitted resources, such as fonts, logos, and forms, if any) need not be retained by the server; thus a job in the completed state could not be reprinted. The length of time that a job may be in the completedthis state, before transitioning to unknown, is specified by the value of the jmGeneralJobPersistence objectimplementation-dependent. In addition, the agent shall maintain all of the attributes in the jmAttributeTable for at least the time specified in the jmGeneralAttributePersistence object, However, servers that implement the completed job-state shall retain all of the job's Job Monitoring MIB objects, except the jmQueueGroup objects, so that a management application accounting program can copy all the attributesthem to an accounting log.
��}
�

� TC "JmAttributeTypeTC - attribute type definitions" \I 3 �
JmAttributeTypeTC� XE JmAttributeTypeTC - attribute type definitions � ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The type of the attribute.

Some attributes represent information about a job, such as a file-name, or a document-name, or submission-time or completion time. Other attributes represent resources required, e.g., a medium or a colorant , etc. to process the job before the job start processing OR to indicate the amount of the resource that is being consumed while the job is processing, e.g., pages completed or impressions completed. If both a required and a consumed value of a resource is needed, this specification assigns two separate attribute enums are assigned in the textual convention.

Most attributes items shall have only one row per job. However, a few attributes items can have multiple values per job or even per document, where each value is a separate row in the jmAttributeTable. Unless indicated otherwise in JmAttributeTypeTC, an agent shall ensure that each attribute item occurs only once in the jmAttributeTable for a job. Attributes items that may appear multiple times in the jmAttributeTable for a job are indicated in their specification in the JmAttributeTypeTC (see page � PAGEREF JmAttributeTypeTC �37�). However, such attribute items shall not contain duplicates for 'intensive' (as opposed to 'extensive') attributes.

For example, each documentFormatEnum attribute entry shall appear in the jmAttributeTable only once for a job since the interpreter language is an intensive attribute item, even though the job has a number of documents that all use the same PDL.

As another example of an intensive attribute that can have multiple entries, if a document or job uses multiple types of media, there shall be only one row in the jmAttributeTable for each media type, not one row for each document that uses that medium type.

On the other hand, if a job contains two documents of the same name, there can be separate rows for the documentName attribute item with the same name, since a document name is an extensive attribute item.

In the following definitions of the enums, each description indicates whether the value of the attribute shall be represented using the jmAttributeValueAsInteger or the jmAttributeValueAsOctets objects by the initial tag: 'Integer:' or 'Octets:', respectively. A very few attributes use both objects at the same time to represent a pair of values (mediumConsumed) and so have both tags. See the jmAttributeGroup for the descriptions of these objects.

If the jmAttributeValueAsInteger object is not used (no 'Integer:' tag), the agent shall return the value (-1) indicating other. If the jmAttributeValueAsOctets object is not used (no 'Octets:' tag), the agent shall return a zero-length octet string.

An agent shall create a row in the jmAttributeTable for each attribute that is (1) supplied with a job when the job is accepted by a server or printer or that (2) the server or printer supplies as a default either when the job is accepted or later during processing. An agent shall not create a row for any attribute that was neither supplied with the job nor supplied by the server or printer as a default.

Some attributes are mandatory for conformance, and the rest are conditionally mandatory. An agent shall instrument any mandatory attribute. If the server or printer does not provide access to the information about the mandatory attribute, the agent shall return the 'unknown' value. An agent shall instrument any conditionally mandatory attribute if the server or printer provides access to the information about the attribute to the agent. If the server or printer does not provide access to the information about the conditionally mandatory attribute, the agent shall not create the row in the jmAttributeTable.

The mandatory attributes are the ones required to have copies in the jmJobStateTable. The mandatory attributes are:

 jobState
 numberOfInterveningJobs
 deviceAlertCode
 jobKOctetsRequestedTotal
 jobKOctetsCompleted
 impressionsRequestedTotal
 impressionsCompleted
 outputBinName

The table of contents lists the attributes in order to help see the order of OID assignment which is the order that the GetNext operation returns attributes.

The standard attribute types defined so far are:"

-- This is a type 2 enumeration. See Section � REF _Ref382968143 \n �6.1� on page � PAGEREF _Ref382968152 �28�.
SYNTAX INTEGER {
-- jm
-- Attribute
-- TypeIndex
--
--��Description - including Octets: or Integer: to specify whether the value is represented in the jmAttributeValueAsOctets or the jmAttributeValueAsInteger object, respectively.
��other(1),� TC "other" \I 4 �� XE other ��--
--�An attribute that is not in the list and/or that has not been registered with IANA.
��� TC "Job State attributes" \I 3 �
-- **
-- Job State attributes
--
-- The following attributes specify the state of a job.
-- **
��jobState(2)� TC "jobState (mandatory)" \I 3 �� XE jobState ��--
--
--�The current state of the job (pending, processing, held, etc.)

Management applications shall be prepared to receive all the standard job states. Servers and devices are not required to generate all job states, only those which are appropriate for the particular implementation.

A companion textual convention (JmJobStateReasonsTC) and corresponding attribute (jobStateReasons) provide additional information about job states. While the job states cannot be added to without impacting deployed clients, it is the intent that additional JmJobStateReasonsTC enums can be defined without impacting deployed clients. In other words, the JmJobStateReasonsTC is intended to be extensible. See page � PAGEREF JmJobStateReasonsTC �56�.

This attribute is a type 2 enum.��jobStateAssociatedValue(3)� TC "jobStateAssociatedValue" \I 3 �� XE jobStateAssociatedValue ��--
--
--�Integer: The value of the most relevant attribute associated with the job's current state.

Which attribute depends on the job's current state (as specified by the value of the jmJobState object and the jobState attribute) as follows:

jmJobState Associated Attribute Page
/jobState

held � REF jobStartedBeingHeldTime * MERGEFORMAT �jobStartedBeingHeldTime� � PAGEREF jobStartedBeingHeldTime �53�
pending numberOfInterveningJobs 43
processing jobKOctetsRequested 47
printing impressionsRequested 49
needsAttention deviceAlertCode � PAGEREF deviceAlertCode �41�
canceled impressionsCompleted � PAGEREF impressionsCompleted �50�
completed outputBinName � PAGEREF outputBinName �46�

NOTE - The jobStateAssociatedValue attribute selects from amongst seven mandatory attributes that attribute that is most relevant to the job's current state. the jobStateAssociatedValue attribute is provided as an efficiency improvement, so that an application can obtain the most relevant attribute for each job's current state (1) without first having to determine the job's state or (2) having to request all seven mandatory attributes in the same GetNext operation that obtains the next job in the next conceptual row in the jmAttributeTable.
��jobStateReasons(4)� TC "jobStateReasons" \I 3 �� XE jobStateReasons ��--
--
--�Octets: Additional information regarding the jmJobState/jobState object/attribute. The jobStateReasons attribute identifies the reason or reasons that the job is in the held, pending, processing, needsAttention, canceled, retained, or completed state. The server shall indicate the particular reason(s) by setting the value of the jobStateReasons attribute. While the job states cannot be added to without impacting deployed clients, it is the intent that additional JmJobStateReasonsTC enums can be defined without impacting deployed clients. In other words, the JmJobStateReasonsTC is intended to be extensible. See page � PAGEREF JmJobStateReasonsTC �56�.

When the job does not have any reasons for being in its current state, the server shall set the value of the jobStateReasons attribute to a bit string containing all zeros.

Bits in the bit string are assigned starting with the most significant bit in the most significant octet which is called bit 1. Bit 2 is the next most significant bit in the most significant octet, etc. Bit 9 is the most significant bit in the second most significant octet, etc., up to the maximum bit: 504 (= 8 x 63). See JobStateReasonsTC on page � PAGEREF JmJobStateReasonsTC �56�.

An agent only needs to return the most significant octet up to the least significant octet that contains a non-zero bit. The remaining octets need not be returned.

If all bits are zero, the agent may return an OCTET STRING of zero length. Alternatively, an agent may always return a fixed number of octets starting with the most significant octet and running through the least significant octet that could ever have a one bit in it for that implementation.

This object is a type 2 bit string. See Section � REF _Ref377982386 \n �6� entitled '� REF _Ref377982386 * MERGEFORMAT �IANA Considerations�' on page � PAGEREF _Ref377982386 �28�.
��numberOfInterveningJobs(5)� TC "numberOfInterveningJobs (mandatory)" \I 3 �� XE numberOfInterveningJobs ���Integer: The number of jobs that are expected to be processed before this job is processed according to the implementation's queuing algorithm if no other jobs were to be submitted. In other words, this value is the job's queue position. The agent shall return a value of 0 for this object when the job starts processing (since there are no jobs in front of the job).
��deviceAlertCode(6)� TC "deviceAlertCode (mandatory)" \I 3 �� XE deviceAlertCode��--
--
--
--
--
--
--�The device alert code when the job is stopped because the device needs attention , i.e., needs human intervention. When the device is a printer, this device alert code shall be the printer alert code defined by the Printer MIB using the PrtAlertCodeTC textual convention or equivalent.
��processingMessage(7),� TC "processingMessage" \I 4 �� XE processingMessage ��--
--
--
--
--
--
--
--�Octets: A coded character set message that is generated during the processing of the job as a simple form of processing log to show progress and any problems.

A row with this attribute item may appear more than once in the jmAttributeTable for a job.
��� TC "Job Identification attributes" \I 3 �
-- **
-- Job Identification attributes
--
-- The following attributes help an end user, a system
-- operator, or an accounting program identify a job.
-- **
��jobName(8)� TC "jobName" \I 3 �� XE jobName ��--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
----�Octets: The human readable string name of the job as assigned by the submitting user to help the user distinguish between his/her various jobs. This name does not need to be unique.

This attribute is intended for enabling a user or the user's application to convey a job name that may be printed on a start sheet, returned in a query result, or used in notification or logging messages.

If this attribute is not specified when the job is submitted, no job name is assumed, but implementation specific defaults are allowed, such as the value of the documentName(4) resource item of the first document in the job or the fileName(3) resource item of the first document in the job.

The jobName attribute is distinguished from the jobComment attribute, in that the jobName attribute is intended to permit the submitting user to distinguish between different jobs that he/she has submitted. The jobComment attribute is intended to be free form additional information that a user might wish to use to communicate with himself/herself, such as a reminder of what to do with the results or to indicate a different set of input parameters were tried in several different job submissions.
��jobServiceTypes(9)� TC "jobServiceTypes" \I 3 �� XE jobServiceTypes ��--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
�Integer: Specifies the type(s) of service to which the job has been submitted (print, fax, scan, etc.) as defined by the JmJobServiceTypesTC on page � PAGEREF JmJobServiceTypesTC �54�. The service type is represented as a BITS datatype that is bit encoded with each job service type so that more general and arbitrary services can be created, such as services with more than one destination type, or ones with only a source or only a destination. For example, a job service might scan, fax, and print a single job. In this case, three bits would be set in the jobServiceTypes attribute, corresponding to the values: 8+32+4=44, respectively.

Whether this attribute is set from a job attribute supplied by the job submission client or is set by the recipient job submission server or device depends on the job submission protocol. This attribute shall be implemented if the server or device has other types in addition to or instead of printing.

One of the purposes of this attribute is to permit a requester to filter out jobs that are not of interest. For example, a printer operator may only be interested in jobs that include printing. That is why the object is in the job identification category.

This attribute is a type 2 enum.
��jobOwner(10)� TC "jobOwner" \I 3 �� XE jobOwner ��--
--
--
--
--
--
--
--
--
--
�Octets: The coded character set name of the user that submitted the job. The method of assigning this user name will be system and/or site specific but the method must insure that the name is unique to the network that is visible to the client and target device.

This value should be the authenticated name of the user submitting the job.��jobAccountName(115),� TC "jobAccountName" \I 4 �� XE jobAccountName ��--
--
--
--
--
--
--
--
--�Octets: Arbitrary binary information which may be coded character set data or encrypted data supplied by the submitting user for use by accounting services to allocate or categorize charges for services provided, such as a customer account name.

NOTE: This attribute need not be printable characters.
��jmJobDeviceNameOrQueueRequested(12)� TC "jmJobDeviceNameOrQueueRequested" \I 3 �� XE jmJobDeviceNameOrQueueRequested ��--
--
--
--
--
--
--
--
--
--�The administratively defined coded character set name of the target device or queue. Its value corresponds to the Printer MIB: prtGeneralPrinterAdminName object (added to the draft Printer MIB) for printers. For servers, this object is the name that users supply to indicate whether they want the job to be processed, typically, but not limited to, a job queue name or logical printer name.
��jobSourceChannelIndex(138),� TC "jobSourceChannelIndex" \I 4 �� XE jobSourceChannelIndex ��--
--
--
--
--
--
--
--
--
--
--
--
--�Integer: The index of the row in the associated Printer MIB of the channel which is the source of the print job. See RFC 1759.

Must be 1 or greater.

NOTE - the Job Monitoring MIB points to the Channel row in the Printer MIB, so there is no need for a port object in the Job Monitoring MIB, since the PWG is adding a prtChannelInformation object to the Channel table of the draft Printer MIB.
��physicalDeviceIndex(14),� TC "physicalDeviceIndex" \I 4 �� XE physicalDeviceIndex ��--
--
--
--
--
--
--
--
--
--
--
--
--
--�Integer: The index of the physical device MIB instance requested/used, such as the Printer MIB. This value is an hrDeviceIndex value. See the Host Resource MIB.

A row with this attribute item may appear more than once in the jmAttributeTable for a job that is using more than one physical device, but the jmAttributeValueAsInteger shall be different for each such row.

If there is no physical device MIB instance for this job, this row shall not be present in the jmAttributeTable.
��physicalDeviceName(15),� TC "physicalDeviceName" \I 4 �� XE physicalDeviceName ��--
--
--
--
--
--
--
--�Octets: The name of the physical device to which the job is assigned.

A row with this attribute item may appear more than once in the jmAttributeTable for a job that is using more than one physical device, but the jmAttributeValueAsOctets shall be different for each such row.
��fileName(163),� TC "fileName" \I 4 �� XE fileName ��--
--
--
--
--
--�Octets: The coded character set file name of the document.

A row with this attribute item may appear more than once in the jmAttributeTable for a job.
��documentName(174),� TC "documentName" \I 4 �� XE documentName ��--
--
--
--
--
--�Octets: The coded character set name of the document.

A row with this attribute item may appear more than once in the jmAttributeTable for a job.
��jobComment(186),� TC "jobComment" \I 4 �� XE jobComment ��--
--
--
--
--
--
--
--
--
--
--�Octets: An arbitrary human-readable coded character text string supplied by the submitting user or the job submitting application program for any purpose. For example, a user might indicate what he/she is going to do with the printed output or the job submitting application program might indicate how the document was produced.

The jobComment attribute is not intended to be a name; see the jmJobName attributeobject.
��� TC "Job Parameter attributes" \I 3 �
-- **
-- Job Parameter attributes
--
-- The following attributes represent input parameters
-- supplied by the submitting client in the job submission
-- protocol.
-- **
��jobPriority(19)� TC "jobPriority" \I 3 �� XE jobPriority ���Integer32(0..100): The priority for scheduling the job. It is used by servers and devices that employ a priority-based scheduling algorithm.

A higher value specifies a higher priority. The value 1 is defined to indicate the lowest possible priority (a job which a priority-based scheduling algorithm shall pass over in favor of higher priority jobs). The value 100 is defined to indicate the highest possible priority. Priority is expected to be evenly or 'normally' distributed across this range. The mapping of vendor-defined priority over this range is implementation-specific.

A value of 0 shall be returned by implementations that do not have a priority-based queuing algorithm.
��jobProcessAfterDateAndTime(20)� TC "jobProcessAfterDateAndTime" \I 3 �� XE jobProcessAfterDateAndTime ��--------------------------
--
--
--
--
--
--
--
--
--
--
--�Integer: The calendar date and time of day after which the job shall become a candidate to be scheduled for processing. If the value of this attribute is in the future, the server shall set the value of the job's jmJobCurrentState object and the job's jobState attribute to held and add the jobProcessAfterSpecified bit value to the job's jobStateReasons attribute and shall not schedule the job for processing until the specified date and time has passed. When the specified date and time arrives, the server shall remove the jobProcessAfterSpecified bit value from the job's jobStateReasons attribute and, if no other reasons remain, shall change the job's jmJobCurrentState and the job's jobState attribute to pending so that the job becomes a candidate for being scheduled on devices(s).

The server shall assign an empty value to the jobProcessAfterDateAndTime attribute when no process after time has been specified, so that the job shall be a candidate for processing immediately.
��outputBinIndex(219),� TC "outputBinIndex" \I 4 �� XE outputBinIndex ��--
--
--
--
--
--
--
--�Integer: The output subunit index in the Printer MIB of the output bin to which all or part of the job is placed in.

A row with this attribute item may appear more than once in the jmAttributeTable for a job, but the jmAttributeValueAsInteger shall be different for each such row.
��outputBinName(2210),� TC "outputBinName (mandatory)" \I 4 �� XE outputBinName ��--
--
--
--
--
--
--�Octets: The name of the output bin to which all or part of the job is placed in.

A row with this attribute item may appear more than once in the jmAttributeTable for a job, but the jmAttributeValueAsOctets shall be different for each such row.
��sides(2311),� TC "sides" \I 4 �� XE sides ��--
--
--�Integer: The number of sides that any document in this job will require or did use.
��documentFormatIndex(2412),� TC "documentFormatIndex" \I 4 �� XE documentFormatIndex ��--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--�Integer: The interpreter language family index in the Printer MIB of the prtInterpreterLangFamily object, that this job requires and uses. A document or a job may use more than one PDL.

A row with this attribute item may appear more than once in the jmAttributeTable for a job, but the jmAttributeValueAsInteger shall be different for each such row. As with all intensive attribute items where multiple rows are allowed, there shall be only one distinct row for each distinct PDL; there shall be no duplicates.

NOTE - This attribute type is intended to be used with an agent that implements the Printer MIB and shall not be used if the agent does not implement the Printer MIB. Such as agent shall use the documentFormatEnum attribute instead.
��documentFormatEnum(2513),� TC "documentFormatEnum" \I 4 �� XE documentFormatEnum ��--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--�Integer: The interpreter language family corresponding to the Printer MIB prtInterpreterLangFamily object, that this job requires and uses. A document or a job may use more than one PDL.

A row with this attribute item may appear more than once in the jmAttributeTable for a job, but the jmAttributeValueAsInteger shall be different for each such row. As with all intensive attribute items where multiple rows are allowed, there shall be only one distinct row for each distinct PDL; there shall be no duplicates.

This enum is a type 2 enum.

NOTE: Theis PrtInterpreterLangFamilyTC textual convention is defined inimported from the draft Printer MIB, but is not in RFC 1759.
��� TC "Resource attributes (requested and consumed)" \I 3 �
-- **
-- Resources attributes (requested and consumed) attributes
--
-- Pairs of these attributes can be used by monitoring
-- applications to show users 'thermometers' of usage to users.
-- **
��jobCopiesRequested(2616),� TC "jobCopiesRequested" \I 4 �� XE jobCopiesRequested ��--
--
--
--�Integer: The number of copies of the entire job that are to be produce

A value of -2 means unknown.
��jobCopiesCompleted(2717),� TC "jobCopiesCompleted" \I 4 �� XE jobCopiesCompleted ��--
--
--
--
--�Integer: The number of copies of the entire job that the entire job has completed so far.

A value of (-2) means unknown.
��documentCopiesRequested(2818),� TC "documentCopiesRequested" \I 4 �� XE documentCopiesRequested ��--
--
--
--
--�Integer: The total count of the number of document copies requested. If there are documents A, B, and C, and document B is specified to produce 4 copies, the number of document copies requested is 6 for the job.
��documentCopiesCompleted(2919),� TC "�" \I 4 XE documentCopiesRequested � �� XE � XE documentCopiesRequested � ��--
--
--
--
--
--
--�Integer: The total count of the number of document copies completed so far for the job as a whole. If there are documents A, B, and C, and document B is specified to produce 4 copies, the number of document copies starts a 0 and runs up to 6 for the job as the job processes.
��jobKOctetsRequestedTotal(3020),� TC "jobKOctetsRequestedTotal (mandatory)" \I 4 �� XE jobKOctetsRequestedTotal ��--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--�Integer: The total number of K (1024) octets being requested to be processed in the job, including document and job copies. The agent shall round the actual number of octets up to the next highest K. Thus 0 octets shall be represented as 0, 1-1024 octets shall be represented as 1, 1025-2048 shall be represented as 2, etc.

The server/device may update the value of this attribute after each document has been transferred to the server/device or the server/device may provide this value after all documents have been transferred to the server/device, depending on implementation. In other words, while the job is in the preProcessing state and when the job is in the held state with the jmJjobStateReasons attributeobject containing a documentsNeeded or preProcessing value, the value of the jobKOctetsRequestedTotal attribute depends on implementation and may not correctly reflect the size of the job.

In computing this value, the server/device shall include the multiplicative factors contributed by (1) the number of document copies, and (2) the number of job copies, independent of whether the device can process multiple copies of the job or document without making multiple passes over the job or document data and independent of whether the output is collated or not. Thus the server/device computation is independent of the implementation and shall be:

(1) Document contribution: Multiply the size of each document in octets by the number of document copies of that document.

(2) Add each document contribution together.

(3) Job copy contribution: Multiply the job size by the number of job copies.

(4) Round up the result to the next higher K (1024 multiple).

The total K octets to be processed can be used in the denominator with the jmJjobKOctetsCompleted attribute in the numerator in order to produce a 'thermometer' that indicates the progress of the job.

The value (-2) means unknown.
��jobKOctetsCompleted(3121),� TC "jobKOctetsCompleted (mandatory)" \I 4 �� XE jobKOctetsCompleted ��--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--�Integer: The number of K (1024) octets currently processed by the server or device, including document and job copies. For printing, the completed count only includes processing (interpreting) and markingif the implementation distinguishes between the processing and printing states; otherwise, the completed count includes both processing (interpreting) and marking combined together. For scanning, the completed count only includes scanning, if the implementation distinguishes between the processing and (to be registered) scanning states; otherwise the completed count includes both scanning and processing (formatting).

The agent shall round the actual number of octets completed up to the next higher K. Thus 0 octets is represented as 0, 1-1023, is represented as 1, 1024-2047 is 2, etc. When the job completes, the values of the jobKOctetsRequestedTotal and the jmJobKOctetsCompleted attributes shall be equal.

For multiple copies generated from a single data stream, the value shall be incremented as if each copy was printed from a new data stream without resetting the count between copies. See the pagesCompletedCurrentCopy attribute that is reset on each document copy.

The total K octets completed can be used in the numerator with the jobKOctetsRequestedTotal attribute in the denominator in order to produce a "thermometer" that indicates the progress of the job.

The value of this attribute shall be 0 if processing has not started for this job.
��� TC "Impression attributes" \I 3 �
-- **
-- Impression attributes
--
-- For a print job, an impression is the marking of the
-- entire side of a sheet. Two-sided processing involves two
-- impressions per sheet. Two-up is the placement of two
-- logical pages on one side of a sheet and so is still a
-- single impression.
-- **
��impressionsSpooled(3222),� TC "impressionsSpooled" \I 4 �� XE impressionsSpooled ��--
--�Integer: The number of impressions spooled to the server or device for the job so far.
��impressionsSentToDevice(3323),� TC "impressionsSentToDevice" \I 4 �� XE impressionsSentToDevice ��--
--�Integer: The number of impressions sent to the device for the job so far.
��impressionsInterpreted(3424),� TC "impressionsInterpreted" \I 4 �� XE impressionsInterpreted ��--
--�Integer: The number of impressions interpreted for the job so far.
��impressionsRequested(3525),� TC "impressionsRequested (mandatory)" \I 4 �� XE impressionsRequested ��--
--�Integer: The number of impressions requested by this job to produce.
��impressionsCompleted(3626),� TC "impressionsCompleted (mandatory)" \I 4 �� XE impressionsCompleted ��--
--
--
--
--
--
--
--
--
--
--�Integer: The total number of impressions completed by the device for this job so far. For printing, the impressions completed includes interpreting, marking, and stacking the output. For other types of job services, the number of impressions completed includes the number of impressions processed.

The value of this attribute shall be 0 if processing has not started for this job.
��impressionsCompletedCurrentCopy(3727),� TC "impressionsCompletedCurrentCopy" \I 4 �� XE impressionsCompletedCurrentCopy ��--
--
--
--
--
--
--
--
--
--
--�Integer: The number of impressions completed by the device for the current copy of the current document so far. For printing, the impressions completed includes interpreting, marking, and stacking the output. For other types of job services, the number of impressions completed includes the number of impressions processed.

The value of this attribute shall be 0 if processing has not started for this job.
��� TC "Page attributes" \I 3 �
-- **
-- Page attributes
--
-- A page is a logical page. Number up can impose more than
-- one page on a single side of a sheet. Two-up is the
-- placement of two logical pages on one side of a sheet so
-- that each side counts as two pages.
-- **
��pagesRequested(3828),� TC "pagesRequested" \I 4 �� XE pagesRequested ��--
--�Integer: The number of logical pages requested by the job to be processed.
��pagesCompleted(3929),� TC "pagesCompleted" \I 4 �� XE pagesCompleted ��--
--�Integer: The total number of logical pages completed for this job so far.
��pagesCompletedCurrentCopy(4030),� TC "pagesCompletedCurrentCopy" \I 4 �� XE pagesCompletedCurrentCopy ��--
--
--
--
--�Integer: The number of logical pages completed for the current copy of the document so far. This value shall beis reset to 0 for each document in the job and for each document copy.
��� TC "Sheet attributes" \I 3 �
-- **
-- Sheet attributes
--
-- The sheet is a single piece of a medium, whether printing
-- on one or both sides.
-- **
��sheetsRequested(4131),� TC "sheetsRequested" \I 4 �� XE sheetsRequested ��--
--�Integer: The total number of medium sheets requested to be processed for this job.
��sheetsCompleted(4232),� TC "sheetsCompleted" \I 4 �� XE sheetsCompleted ��--
--
--
--
--
--�Integer: The total number of medium sheets that have been completed marking and stacking for the entire job so far whether those sheets have been processed on one side or on both.
The value of this attribute shall be 0 if processing has not started for this job.
��sheetsCompletedCurrentCopy(4333),� TC "sheetsCompletedCurrentCopy" \I 4 �� XE sheetsCompletedCurrentCopy ��--
--
--
--
--
--�Integer: The number of medium sheets that have been completed marking and stacking for the current copy of a document in the job so far whether those sheets have been processed on one side or on both.
The value of this attribute shall be reset to 0 each document in the job and for each document copy if processing has not started for this job.
��mediumRequested(4434),� TC "mediumRequested" \I 4 �� XE mediumRequested ��--
--
--
--
--
--
--�Octets: The name of the medium that is required by the job.

A row with this attribute item may appear more than once in the jmAttributeTable for a job, but the jmAttributeValueAsOctets shall be different for each such row.
��mediumConsumed(4535),� TC "mediumConsumed" \I 4 �� XE mediumConsumed ��--
--
--
--
--
--
--
--
--
--
--
--
--
--
--�Octets: The name of the medium AND

Integer: the number of sheets that have been consumed so far whether those sheets have been processed on one side or on both. This attribute shall have both values.

A row with this attribute item may appear more than once in the jmAttributeTable for a job, but the jmAttributeValueAsOctets shall contain a different name for each such row.

The value of this attribute shall be 0 if processing has not started for this job.
��colorantRequestedIndex(4636),� TC "colorantRequestedIndex" \I 4 �� XE colorantRequestedIndex ��--
--
--
--
--
--
--
--�Integer: The index (prtMarkerColorantIndex) in the Printer MIB of the colorant requested.

A row with this attribute item may appear more than once in the jmAttributeTable for a job, but the jmAttributeValueAsOctets shall be different for each such row.
��colorantRequestedName(4737),� TC "colorantRequestedName" \I 4 �� XE colorantRequestedName ��--
--
--
--
--
--
--�Octets: The name of the colorant requested.

A row with this attribute item may appear more than once in the jmAttributeTable for a job, but the jmAttributeValueAsOctets shall be different for each such row.
��colorantConsumedIndex(4838),� TC "colorantConsumedIndex" \I 4 �� XE colorantConsumedIndex ��--
--
--
--
--
--
--�Integer: The index (prtMarkerColorantIndex) in the Printer MIB of the colorant consumed.

A row with this attribute item may appear more than once in the jmAttributeTable for a job, but the jmAttributeValueAsOctets shall be different for each such row.
��colorantConsumedName(4939),� TC "colorantConsumedName" \I 4 �� XE colorantConsumedName ��--
--
--
--
--
--
--�Octets: The name of the colorant consumed.

A row with this attribute item may appear more than once in the jmAttributeTable for a job, but the jmAttributeValueAsOctets shall be different for each such row.
��� TC "Time attributes" \I 3 �
-- **
-- Time attributes
--
-- tTwo forms of time are provided. Each form is represented
-- in a separate attribute. Implementations may choose the
-- more appropriate form. An implementation need not provide
-- both forms and is recommended not to provide both forms
-- for a particular attribute. However, some attributes may
-- be in one form and others may be in the other form,
-- depending on the source of the time. The two forms are:

-- DateAndTime is an 8 or 11 octet binary encoded year,
-- month, day, hour, minute, second, deci-second with
-- optional offset from UTC. See SNMPv2-TC.
--
-- NOTE: DateAndTime is not printable characters; it is
-- binary.

-- JmTimeTCStamp is the time of day measured in the number of
-- seconds as an offset from the integer value of sysUpTime
-- (which is measured in hundredths of a second).
-- See page � PAGEREF JmTimeTC �32�.
-- **
��jobSubmissionDateAndTime(5040),� TC "jobSubmissionDateAndTime" \I 4 �� XE jobSubmissionDateAndTime ��--
--
--
--�Octets: The date and time that the job was submitted. The value shall be specified using the DateAndTime textual convention from SMIv2-TC.NOTE: DateAndTime is not printable characters.
��jobSubmissionTimeStamp(5141),� TC "jobSubmissionTimeStamp" \I 4 �� XE jobSubmissionTimeStamp ��--
--
--
--�Integer: The time that the job was submitted. The value shall be specified using the JmTimeTC textual convention from SMIv2-TC (see page � PAGEREF JmTimeTC �32�).
��jobStartedBeingHeldTime(52),� TC "jobStartedBeingHeldTime" \I 4 �� XE jobStartedBeingHeldTime ��--
--
--
--
--
--
--�Integer: The time that the job started being held, i.e., the time that the job entered the held state most recently. The value shall be specified using the JmTimeTC textual convention (see page � PAGEREF JmTimeTC �32�). If the job has never entered the held state, then the value shall be 0.
��jobStartedProcessingDateAndTime(5342),� TC "jobStartedProcessingDateAndTime" \I 4 �� XE jobStartedProcessingDateAndTime ��--
--
--
--�Octets: The date and time that the job started processing. The value shall be specified using the DateAndTime textual convention from SMIv2-TC.
��jobStartedProcessingTimeStamp(5443),� TC "jobStartedProcessingTimeStamp" \I 4 �� XE jobStartedProcessingTimeStamp ��--
--
--
--�Integer: The time that the job started processing. The value shall be specified using the JmTimeTCStamp textual convention from SMIv2-TC (see page � PAGEREF JmTimeTC �32�).
��jobCompletedDateAndTime(5544),� TC "jobCompletedDateAndTime" \I 4 �� XE jobCompletedDateAndTime ��--
--
--
--
--
--
--�Octets: The date and time that the job completed processing and the medium is completely stacked in the output bin, i.e., when the job entered the completed state. The value shall be specified using the DateAndTime textual convention from SMIv2-TC.
��jobCompletedTimeStamp(5645),� TC "jobCompletedTimeStamp" \I 4 �� XE jobCompletedTimeStamp ��--
--
--
--
--
--
�Integer: The time that the job completed processing and the medium is completely stacked in the output bin, i.e., when the job entered the completed state. The value shall be specified using the JmTimeTC Stamp textual convention from SMIv2-TC (see page � PAGEREF JmTimeTC �32�).
��processingCPUTime(5746)� TC "processingCPUTime" \I 4 �� XE processingCPUTime ��--
--
--
--
--
--
--
--
--�Integer: The amount of CPU time that the job has been processing in seconds. If the job needs attention, that elapsed time shall not be included. In other words, the processingCPUTime should be relatively repeatable.

The value of this attribute shall be 0 if processing has not started for this job.
��}

� TC "JmJobServiceTypesTC - bit encoded job service type definitions" \I 3 �
JmJobServiceTypesTC� XE JmJobServiceTypesTC - bit encoded job service type definitions � ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Specifies the type(s) of service to which the job has been submitted (print, fax, scan, etc.). The service type is represented as an enum that is bit encoded with each job service type so that more general and arbitrary services can be created, such as services with more than one destination type, or ones with only a source or only a destination. For example, a job service might scan, faxOut, and print a single job. In this case, three bits would be set in the jobServiceTypes attribute, corresponding to the values: 8+32+4=44, respectively.

Whether this object is set from a job attribute supplied by the job submission client or is set by the recipient job submission server or device depends on the job submission protocol. With either implementation, the agent shall return a non-zero value for this object indicating the type of the job.

One of the purposes of this object is to permit a requester to filter out jobs that are not of interest. For example, a printer operator may only be interested in jobs that include printing. That is why the object is in the job identification category.

The following service component types are defined and are assigned a separate bit value in the enum for use with the jobServiceTypes attribute:"

-- This is a type 2 enumeration. See Section � REF _Ref382968143 \n �6.1� on page � PAGEREF _Ref382968152 �28�.
SYNTAX INTEGER {
other(1),�--
--
--�The job contains some document production instructions that are not one of the identified types.
��unknown(2),�--
--
--�The job contains some document production instructions whose type is unknown to the agent.
��print(4),�--
--�The job contains some document production instructions that specify printing
��scan(8),�--
--�The job contains some document production instructions that specify scanning
��faxIn(16),�--
--�The job contains some document production instructions that specify receive fax
��faxOut(32),�--
--�The job contains some document production instructions that specify sending fax
��getFile(64),�--
--
--�The job contains some document production instructions that specify accessing files or documents
��putFile(128),�--
--
--�The job contains some document production instructions that specify storing files or documents
��mailList(256)�--
--
--�The job contains some document production instructions that specify distribution of documents using an electronic mail system.
��}

�
� TC "JmJobStateReasonsTC - additional information about job states" \I 3 �
JmJobStateReasonsTC� XE JmJobStateReasonsTC - additional information about job states � ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This textual-convention is used in the jobStateReasons attribute to provides additional information regarding the jmJobCurrentState object and the jobState attribute. The jobStateReasons attribute identifies the reason or reasons that the job is in the preProcessing, held, pending, processing, printing, needsAttention, canceled, paused, interruptedterminating, retained, or completed state. The server shall indicate the particular reason(s) by setting the value of the jobStateReasons attribute. While the job states cannot be added to without impacting deployed clients, it is the intent that additional JmJobStateReasonsTC enums can be defined without impacting deployed clients. In other words, the JmJobStateReasonsTC is intended to be extensible.

When the job does not have any reasons for being in its current state, the server shall set the value of the jobStateReasons attribute to a bit string containing all zeros.

Bits in the bit string are assigned starting with the most significant bit in the most significant octet which is called bit 1. Bit 2 is the next most significant bit in the most significant octet, etc. Bit 9 is the most significant bit in the second most significant octet, etc., up to the maximum bit: 504 (= 8 x 63).

An agent need only return the most significant octet up to the least significant octet that contains a non-zero bit.

If all bits are zero, the agent may return an OCTET STRING of zero length. Alternatively, an agent may always return a fixed number of octets starting with the most significant octet and running through the least significant octet that could ever have a one bit in it for that implementation.

This object is a type 2 bit string. See Section � REF _Ref377982386 \n �6� entitled '� REF _Ref377982386 * MERGEFORMAT �IANA Considerations�' on page � PAGEREF _Ref377982386 �28�.

The following standard values are defined as bit numbers, not enums (the bit number equals the last arc of DPA id-val-reasons-xxx OID for the reasons that are in ISO DPA):"

-- This is a type 2 bit string. See section � REF _Ref382968757 \n �6.2� on page � PAGEREF _Ref382968774 �29�.
SYNTAX INTEGER {
-- really OCTET STRING(SIZE(0..63))
documentsNeeded(1),�--
--
--
--
--�The job is in the held state because the server or printer is waiting for the job's files to start and/or finish being transferred before the job can be scheduled to be printed.
��jobHoldSet(2),�--
--
--�The job is in the held state because the client specified that the job is to be held.
��jobProcessAfterSpecified(3),�--
--
--
--
--
--�The job is in the held state because the client specified a time specification reflected in the value of the job's jobProcessAfterDateAndTime attribute that has not yet occurred.
��requiredResourcesNotReady(4),�--
--
--
--
--
--�The job is in the held state because at least one of the resources needed by the job, such as media, fonts, resource objects, etc., is not ready on any of the physical devices for which the job is a candidate.
��successfulCompletion(5),�--
--
--�The job is in the retained or completed state having completed successfully.
��completedWithWarnings(6),�--
--
--�The job is in the canceledterminating, retained, or completed states having completed with warnings.
��completedWithErrors(7),�--
--
--
--�The job is in the canceledterminating, retained, or completed states having completed with errors (and possibly warnings too).
��cancelledByUser(8),�--
--
--�The job is in the canceledterminating, retained, or completed states having been canceled by the user.
��cancelledByOperator(9),�--
--�The job is in the canceledterminating, retained, or completed states having been cancelled by the operator.
��abortedBySystem(10),�--
--�The job is in the canceledterminating, retained, or completed states having been aborted by the system.
��logfilePending(11),�--
--�The job's logfile is pending file transfer.
��logfileTransferring(12),�--
--
--�The job is in the canceledterminating, retained, or completed states and the job's logfile is being transferred.
��cascaded(13),�--
--
--
--
--
--
--
--�After the outbound gateway retrieves all job and document attributes and data, it stores the information into a spool directory. Once it has done this, it sends the supervisor a job-processing event with this job-state-reason which tells the supervisor to transition to a new job state.
��deletedByAdministrator(14),�--
--
--
--
--
--
--�The administrator has issued a Delete operation on the job or a Clean operation on the server or queue containing the job; therefore the job may have been cancelled before or during processing, and will have no retention-period or completion-period.
��discardTimeArrived(15),�--
--
--
--
--
--
--
--
--�The job has been deleted (cancelled with the job-retention-period set to 0) due to the fact that the time specified by the job's job-discard-time has arrived [if the job had already completed, the only action that would have occurred is that the job-retention-period would be set to 0 and the job is deleted].
��postProcessingFailed(16),�--
--
--
--
--
--
--
--
--
--
--�The post-processing agent failed while trying to log accounting attributes for the job; therefore the job has been placed into completedretained state with the retained jobStateReasons attribute value for a system-defined period of time, so the administrator can examine it, resubmit it, etc. The post-processing agent is a plug-and-play mechanism which the system and the customer uses to add functionality that is executed after a job has finished processing.
��submissionInterrupted(17),�--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--�Indicates that the job was not completely submitted for the following reasons: (1) the server has crashed before the job was closed by the client. The server shall put the job into the completed state (and shall not print the job). (2) the server or the document transfer method has crashed in some non-recoverable way before the document data was entirely transferred to the server. The server shall put the job into the completed state (and shall not print the job). (3) the client crashed or failed to close the job before the time-out period. The server shall close the job and put the job into the held state with job-state-reasons of submission-interrupted and job-hold-set and with the job's job-hold attribute set to TRUE. The user may release the job for scheduling by issuing a job submission or management protocol operation.
��maxJobFaultCountExceeded(18),�--
--
--
--
--
--
--
--
--
--
--
--�The job has been faulted and returned by the server several times and that the job-fault-count exceeded the device's (or server's, if not defined for the device) cfg-max-job-fault-count. The job is automatically put into the held state regardless of the hold-jobs-interrupted-by-device-failure attribute. This job-state-reasons value is used in conjunction with the job-interrupted-by-device-failure value.
��devicesNeedAttentionTimeOut(19),�--
--
--
--
--
--
--
--�One or more document transforms that the job is using needs human intervention in order for the job to make progress, but the human intervention did not occur within the site-settable time-out value and the server/device has transitioned the job to the held state.
��needsKeyOperatorTimeOut(20),�--
--
--
--
--
--
--
--
--
--�One or more devices or document transforms that the job is using need a specially trained operator (who may need a key to unlock the device and gain access) in order for the job to make progress, but the key operator intervention did not occur within the site-settable time-out value and the server/device has transitioned the job to the held state.
��jobStartWaitTimeOut(21),�--
--
--
--
--
--
--
--
--
--
--
--�The server/device has stopped the job at the beginning of processing to await human action, such as installing a special cartridge or special non-standard media, but the job was not resumed within the site-settable time-out value and the server/device has transitioned the job to the held state. Normally, the job is resumed by means outside the job submission protocol, such as some local function on the device.
��jobEndWaitTimeOut(22),�--
--
--
--
--
--
--
--
--
--
--
--
--
--�The server/device has stopped the job at the end of processing/printing to await human action, such as removing a special cartridge or restoring standard media, but the job was not resumed within the site-settable time-out value and the server/device has transitioned the job to the completedretained state. Normally, the job is resumed by means outside the job submission protocol, such as some local function on the device, whereupon the job shall transition immediately to the canceledterminating state.
��jobPasswordWaitTimeOut(23),�--
--
--
--
--
--
--
--
--
--
--
--�The server/device has stopped the job at the beginning of processing to await input of the job's password, but the human intervention did not occur within the site-settable time-out value and the server/device has transitioned the job to the held state. Normally, the password is input and the job is resumed by means outside the job submission protocol, such as some local function on the device.
��deviceTimedOut(24),�--
--
--�A device that the job was using has not responded in a period specified by the device's site-settable attribute.
��connectingToDeviceTimeOut(25),�--
--
--
--
--
--
--
--
--�The server is attempting to connect to one or more devices which may be dial-up, polled, or queued, and so may be busy with traffic from other systems, but server was unable to connect to the device within the site-settable time-out value and the server has transitioned the job to the held state.
��transferring(26),�--
--�The job is being transferred to a down stream server or device.
��queuedInDevice(27),�--
--�The job has been queued in a down stream server or device.
��jobCleanup(28),�--
--
--�The server/device is performing cleanup activity as part of ending normal processing.
��processingToStopPoint(29),�--
--
--
--�The requester has issued an operation to interrupt the job and the server/device is processing up until the specified stop point occurs.
��jobPasswordWait(30),�--
--
--
--
--
--
--
--
--
--
--
--
--�The server/device has selected the job to be next to process, but instead of assigning resources and started the job processing, the server/device has transitioned the job to the held state to await entry of a password (and dispatched another job, if there is one). The user resumes the job either locally or by issuing a remote operation and supplying a job-password=secret-code input parameter that must match the job's job-password attribute.
��validating(31),�--
--
--
--�The server/device is validating the job after accepting the job. The job state may be creating, held, pending, or processing.
��queueHeld(32),�--
--
--�The operator has held the entire queue by means outside the scope of the Job model.
��jobProofWait(33),�--
--
--
--
--
--
--�The job has produced a single proof copy and is in the held state waiting for the requester to issue an operation to release the job to print normally, obeying the job-copies and copy-count job and document attributes that were originally submitted.
��heldForDiagnostics(34),�--
--
--�The system is running intrusive diagnostics, so the all jobs are being held.
��serviceOffLine(35),�--
--
--
--
--�The service/document transform is off-line and accepting no jobs. All pending jobs are put into the held state. This could be true if its input is impaired or broken.
��noSpaceOnServer(36),�--
--
--
--
--�The job is held because there is no room on the server to store all of the job. For example, there is no room for the document data or a scan-to-file job.
��pinRequired(37),�--
--
--
--
--
--
--
--
--
--�The System Administrator settable device policy is (1) to require PINs, and (2) to hold jobs that do not have a pin supplied as an input parameter when the job was created. The requester shall either (1) enter a pin locally at the device or issue a remote operation supplying the PIN in order for the job to be able to proceed.
��exceededAccountLimit(38),�--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--�The account for which this job is drawn has exceeded its limit. This condition should be detected before the job is scheduled so that the user does not wait until his/her job is scheduled only to find that the account is overdrawn. This condition may also occur while the job is processing either as processing begins or part way through processing.

An overdraft mechanism should be included to be user-friendly, so as to minimize the chances that the job cannot finish or that media is wasted. For example, the server/device should finish the current copy for a job with collated document copies, rather than stopping in the middle of the current document copy.
��heldForRetry(39),�--
--
--
--
--
--
--
--
--
--
--
--�The job encountered some errors that the server/device could not recover from with its normal retry procedures, but the error is worth trying the job later, such as phone number busy or remote file system in-accessible. For such a situation, the server/device shall add the held-for-retry value to the job's jmJobStateReasons attributeobject and transition the job from the processing to the held, rather than to the completedretained state.
��
-- The following values are from the X/Open PSIS draft standard:
��

cancelledByShutdown(40),�--
--
--
--
--
--
--�The job was cancelled because the server or device was shutdown before completing the job. The job shall be placed in the pending state [if the job was not started, else the job shall be placed in the terminating state].
��deviceUnavailable(41),�--
--
--
--
--
--�This job was aborted by the system because the device is currently unable to accept jobs. This reason [shall be] used in conjunction with the reason aborted-by-system. The job shall be placed in the pending state.
��wrongDevice(42),�--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--�This job was aborted by the system because the device is unable to handle this particular job; the spooler should try another device. This reason [shall be] used in conjunction with the reason aborted-by- system. The job shall be pending if the queue contains other physical devices that the job could print on, and the spooler is capable of not sending the job back to a physical device that has rejected the job for this job-state-reasons value. Otherwise, [the job] shall be placed in the completed state with the jmJobStateReasons retained value set in the jobStateReasons attribute.
��badJob(43),�--
--
--
--
--
--
--
--�This job was aborted by the system because this job has a major problem, such as an ill-formed PDL; the spooler should not even try another device. This reason shall be used in conjunction with the reason aborted-by-system. The job shall be placed in the terminating state.
��jobInterruptedByDeviceFailure(44),�--
--
--
--
--
--�A device or the print system software that the job was using has failed while the job was processing. The device is keeping the job in the held state until an operator can determine what to do with the job.
��
-- The following additional job state reasons have been added to align
-- specify sub-states of the held state that are in ISO DPA:with the Internet Printing Protocol (IPP):
��jobPrinting(45)�--
--
--
--
--
--
--
--
--
--
--�The job is putting marks on a medium. This optional job state reason is provided for systems where there is a significant difference in the time period while a job is in the processing state between putting marks on a medium and other activities, such as interpreting the document data. For systems that interpret and mark at the same time for a job need not implement this job state reason.
��jobPreProcessing(45),�--
--
--
--
--
--
--
--�The job has been created on the server or device but the submitting client is in the process of adding additional job components and no documents have started processing. The job maybe in the process of being checked by the server/device for attributes, defaults being applied, a device being selected, etc.
��jobPaused(46),�--
--
--
--
--
--
--
--
--
--�The job has been indefinitely suspended by a client issuing an operation to suspend the job so that other jobs may proceed using the same devices. The client may issue an operation to resume the paused job at any time, in which case the server or printer places the job in the held or pending states and the job is eventually resumed at the point where the job was paused.
��jobInterrupted(47),�--
--
--
--
--
--
--�The job has been interrupted while processing by a client issuing an operation that specifies another job to be run instead of the current job. The server or printer will automatically resume the interrupted job when the interrupting job completes.
��jobRetained(48)�--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--�The job is being retained by the server or printer after processing and all of the media have been successfully stacked in the output bin(s).

The job (1) has completed successfully or with warnings or errors, (2) has been aborted while printing by the server/device, or (3) has been cancelled by the submitting user or operator before or during processing. The job's jmJobStateReasons attributeobject shall contain the reasons that the job has entered the retained sub-state of the completed state.

While in the retained state, all of the job's document data (and submitted resources, such as fonts, logos, and forms, if any) are retained by the server or device; thus a client could issue an operation to resubmit the job (or a copy of the job) while the job is in the retained state.

The retained state is conditionally mandatory. Implementations that do not retain jobs after they are finished processing such that the client could request that the job be repeated (or resubmitted), need not implement the retained state.
������}
�

--
--
--
--
--�The following table shows the JmJobStateReasonsTC values and the job states for which they are applicable. The ISO DPA job state reasons are shown along with additional job-state-reasons that give users additional feedback on the progress of their job:��
Table � SEQ Table * ARABIC �1� - Legal Job States for each Job State Reason
--�Descriptive Name�Allowed job states��--�documents-needed(1)�held��--�job-hold-set(2)�held��--�job-process-after-specified(3)�held��--�required-resources-not-ready(4)�held��--�successful-completion(5)�completed��--�completed-with-warnings(6)�completed��--�completed-with-errors(7)�completed��--�cancelled-by-user(8)�canceled��--�cancelled-by-operator(9)�canceled��--�aborted-by-system(10)�canceled��--�logfile-pending(11)�canceled��--�logfile-transferring(12)�canceled��--�cascaded(13)�canceled��--�deleted-by-administrator(14)�canceled��--�discard-time-arrived(15)�canceled��--�postprint-failed(16)�canceled, completed��--�submission-interrupted(17)�canceled��--�max-job-fault-count-exceeded(18)�canceled��--�devices-need-attention-time-out(19)�held, canceled��--�needs-key-operator-time-out(20)�held, canceled��--�job-start-wait-time-out(21)�canceled��--�job-end-wait-time-out(22)�canceled��--�job-password-wait-time-out(23)�held, pending��--�device-timed-out(24)�held, canceled��--�connecting-to-device-time-out(25)�held, canceled��--�transferring(26)�processing��--�queued-in-device(27)�processing��--�job-cleanup(28)�processing��--�processing-to-stop-point(29)�processing��--�job-password-wait(30)�held, processing��--�validating(31)�held, pending, processing��--�queue-held(32)�held��--�job-proof-wait(33)�held��--�held-for-diagnostics(34)�held��--�service-off-line(35)�held��--�no-space-on-server(36)�held��--�pin-required(37)�held, canceled��--�exceeded-account-limit(38)�held, canceled��--�held-for-retry(39)�held��--�canceledByShutdown(40)�canceled��--�deviceUnavailable(41)�pending��--�wrongDevice(42)�canceled��--�badJob(43)�canceled��--�jobInterruptedByDeviceFailure(44)�held��--�job-printing(45)�processing���jobPreProcessing(45)�held��--�jobPaused(46)�held��--�jobInterrupted(47)�held��--�jobRetained(48)�completed��

�� TC "The General Group (Mandatory)" \I 2 �
-- The General Group (Mandatory)

-- The jmGeneralGroup consists entirely of the jmGeneralTable.

-- Implementation of every object in this group is mandatory.
-- See Section � REF _Ref378522947 \n �4� entitled '� REF _Ref378522965 * MERGEFORMAT �Conformance Considerations�' on page � PAGEREF _Ref378522970 �26�.

jmGeneral OBJECT IDENTIFIER ::= { jobmonmib 5 }

jmGeneralTable OBJECT-TYPE
SYNTAX SEQUENCE OF JmGeneralEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The jmGeneralTable consists of information of a general nature that are per-job-set, but are not per-job. See � REF _Ref382970318 * MERGEFORMAT �Terminology and Job Model� on page � PAGEREF _Ref382970321 �10� for the definition of a job set.

The jmGeneralTable which is indexed by:

jmJobSetIndex - a running index of Job Set instances supported by this device or server. A job set is used in the MIB to represent the separation of jobs into disjoint sets for scheduling purposes in a server, typically into separate job queues. See � REF _Ref382970318 * MERGEFORMAT �Terminology and Job Model� on page � PAGEREF _Ref382970321 �10� for the definition of a job set."
::= { jmGeneral 1 }

jmGeneralEntry OBJECT-TYPE
SYNTAX JmGeneralEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Information about a job set (queue). See � REF _Ref382970318 * MERGEFORMAT �Terminology and Job Model� on page � PAGEREF _Ref382970321 �10� for the definition of a job set.

An entry shall exist in this table for each job set."
INDEX { jmJobSetIndex }
::= { jmGeneralTable 1 }

JmGeneralEntry ::= SEQUENCE {
jmJobSetIndex�Integer32(1..32767),��jmGeneralJobSetName�OCTET STRING(SIZE(0..63))��jmGeneralJobPersistenceCompletedPolicy�Integer32(0..2147483647),��jmGeneralAttributePersistence�Integer32(0..2147483647),��jmGeneralMaxNumberOfJobs�Integer32(0..2147483647),��jmGeneralNumberOfActiveJobsToComplete�Integer32(0..2147483647),��jmGeneralOldestActiveJobIndex�Integer32(0..2147483647),��jmGeneralNewestActiveJobIndex�Integer32(0..2147483647),��jmGeneralNumberOfJobsCompleted�Integer32(0..2147483647)��}

jmJobSetIndex� TC "jmJobSetIndex" \I 3 �� XE jmJobSetIndex � OBJECT-TYPE
SYNTAX Integer32(1..32767)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The 16-bit index of a Job Set instance used to represent the separation of jobs into disjoint sets for scheduling purposes in a server, typically into separate job queues. See for the definition of a job set. Agents implementing a single Job Set instance shall use an index value of 1 for this object."
::= { jmGeneralEntry 1 }

jmGeneralJobSetName� TC "jmGeneralJobSetName" \I 3�� XE jmGeneralJobSetName� OBJECT-TYPE
SYNTAX OCTET STRING(SIZE(0..63))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The human readable administratively assigned name of this job set. Typically, this name will be the name of the job queue. If a server or printer has only a single job set, this object can be the administratively assigned name of the server or printer itself. This name does not need to be unique, though each job set in a single Job Monitoring MIB should have distinct names.

The purpose of this object is to help the user of the job monitoring application distinguish between several job sets in implementations that support more than one job set."
::= { jmGeneralEntry 12 }

jmGeneralJobPersistenceCompletedPolicy� TC "jmGeneralJobPersistenceCompletedPolicy" \I 3 �� XE jmGeneralJobPersistenceCompletedPolicy � OBJECT-TYPE
SYNTAX Integer32(0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The minimum time in seconds that an entry will remain the device or server keeps jobs in the jmJobIDTable and jmJobStateCompletedTable after processing/printing has completed as specified by the system administrator or the implementation for this instance of the Job Set."
::= { jmGeneralEntry 23 }

jmGeneralAttributePersistence� TC "jmGeneralAttributePersistencey" \I 3 �� XE jmGeneralAttributePersistencecy � OBJECT-TYPE
SYNTAX Integer32(0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The minimum time in seconds that an entry will remain in the jmAttributeTable after processing/printing has completed, i.e., the time in seconds starting when the job enters the completed or canceled state. The value of this object may be either (1) set by the system administrator by means outside this specification or may be (2) fixed by the implementationimplementtation for this instance of the Job Set, depending on implementation. This value shall be equal to or less than the value of jmGeneralJobPersistence. Attributes that are shared between the jmJobIDTable/jmJobStateTable and the jmAttributeTable shall be governed by the larger value in all tables."
::= { jmGeneralEntry 34 }

jmGeneralMaxNumberOfJobs� TC "jmGeneralMaxNumberOfJobs" \I 3 �� XE jmGeneralMaxNumberOfJobs � OBJECT-TYPE
SYNTAX Integer32(0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The maximum number of queued and completed jobs that this server or print can support at the same time.

The value (-1) indicating other shall indicate that there is no fixed limit."
::= { jmGeneralEntry 4 }

jmGeneralNumberOfActiveJobsToComplete� TC "jmGeneralNumberOfActiveJobsToComplete" \I 3 �� XE jmGeneralNumberOfActiveJobsToComplete � OBJECT-TYPE
SYNTAX Integer32(0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The currenttotal number of active jobs currently in the jmJobIDTable, jmJobStateTable, and jmAttributeTable that are to be completed, i.e., the total number of jobs that have neither completed nor have been canceledare in the following states: pre-processing, held, pending, processing, needs-attention, paused, interrupted, or terminating, but not retained or completed. See � REF JmJobStateTC * MERGEFORMAT �JmJobStateTC� on page � PAGEREF JmJobStateTC �32� for the exact specification of the semantics of the job states.

If there are no active jobs, the value of this object shall be 0."
::= { jmGeneralEntry 45 }

jmGeneralNumberOfJobsCompleted� TC "jmGeneralNumberOfJobsCompleted" \I 3 �� XE jmGeneralNumberOfJobsCompleted � OBJECT-TYPE
SYNTAX Integer32(0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of jobs currently in the jmJobTable that are completed, i.e., the total number of jobs that are in the following states: retained or completed, but not pre-processing, held, pending, processing, needs-attention, paused, interrupted, or terminating. See for the exact specification of the semantics of retained, completed and the other states.

The value of the jmGeneralNumberOfJobsCompleted shall equal the number of jobs in the jmCompletedTable. The sum of jmGeneralNumberOfJobsToComplete and jmGeneralNumberOfJobsCompleted shall be equal to the number of jobs in the jmJobTable."
::= { jmGeneralEntry 6 }

jmGeneralOldestActiveJobIndex� TC jmGeneralOldestActiveJobIndex \I 3 �� XE jmGeneralOldestActiveJobIndex � OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The jmJobIndex of the oldest active job, i.e., the job in the jmJobStateTable and jmAttributeTable that has been there the longest and has neither completed nor been canceled.

If there are no active jobs, the value shall be 0.

NOTE - For implementations that process jobs in order of submission, this object indicates the 'separating line' between completed jobs and jobs that are still active. However, an application shall still have to skip over canceled jobs when searching for active jobs.

NOTE - Applications that wish to skip over completed or canceled jobs may use this value to start with the oldest active job and continue until they reach the index value equal to jmGeneralNewestActiveJobIndex, skipping over any completed or canceled jobs that might intervene. Since jobs may arrive while such an application is performing GetNext operations, the application should always get the value of jmGeneralNewestActiveJobIndex in each GetNext operation to see if this job is still the newest. If an application gets the no more rows ??? return, the job index may have wrapped such that the jmGeneralNewestActiveJobIndex is smaller than jmGeneralOldestActiveJobIndex. In this case, the application shall start over at 1 and continue the GetNext operations to find the rest of the active jobs."
::= { jmGeneralEntry 56 }

jmGeneralNewestActiveJobIndex� TC jmGeneralNewestActiveJobIndex �� XE jmGeneralNewestActiveJobIndex � OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The jmJobIndex of the newest active job, i.e., the job in the jmJobStateTable and jmAttributeTable that has been added most recently and has neither completed nor been canceled.

If there are no active jobs, the value shall be 0."
::= { jmGeneralEntry 6 }

�� TC "The Queue Group" \I 2 �
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--�The Queue Group (Conditionally Mandatory)

The jmQueueGroup consists of job objects that are needed by a server or device that queues jobs, but are not needed after the job has completed processing, i.e., are not needed by accounting applications.

The jmQueueGroup is conditionally mandatory meaning that the jmQueueGroup shall be implemented by a Job Monitoring MIB agent that is instrumenting a server or printer that performs queuing (or spooling).

The jmQueueGroup is made up entirely of the jmQueueTable which is an ordered list of jobs in a job set that have not completed processing. The jmQueueTable is indexed by:

jmJobSetIndex - a running index of Job Set instances supported by this device or server. A job set is used in the MIB to represent the separation of jobs into disjoint sets for scheduling purposes in a server, typically into separate job queues. See on page for the definition of a job set.

jmQueueIndex - a running index of the jobs that have not finished processing and shall indicate the order that the jobs are currently scheduled to be processed.

Implementation of this group is conditionally mandatory, i.e., mandatory if the server or printer that the agent is instrumenting queues jobs (rather than just passing the jobs through). See Section entitled '' on page .��
jmQueue OBJECT IDENTIFIER ::= { jobmonmib 6 }

jmQueueTable OBJECT-TYPE
SYNTAX SEQUENCE OF JmQueueEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of per-job information needed by a server or device that performs queuing."
::= { jmQueue 1 }

jmQueueEntry OBJECT-TYPE
SYNTAX JmQueueEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Information about a job in a server or printer that performs queuing.

An entry shall exist in this table for each job in a job set that is queued, i.e., for each job that has not completed processing."
INDEX { jmJobSetIndex, jmQueueIndex }
::= { jmQueueTable 1 }

JmQueueEntry ::= SEQUENCE {
jmQueueIndex�Integer32(1..2147483647),��jmQueueJobIndex�Integer32(1..2147483647),��jmQueueNumberOfInterveningJobs�Integer32(0..2147483647),��jmJobPriority�Integer32(0..100),��jmJobProcessAfterDateAndTime�DateAndTime��}

jmQueueIndex� TC "jmQueueIndex" \I 3 �� XE jmQueueIndex� OBJECT-TYPE
SYNTAX Integer32(0..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The 32-bit index of the jobs that have not finished processing. The index values shall be assigned monatonically increasing as the server or printer determines the order of processing. The agent shall change the value of this object dynamically as the priority ordering of jobs changes. Thus the jmQueueTable orders the jobs into their current priority order which can change as new jobs are submitted and/or the configuration of the Printer is changed."
::= { jmQueueEntry 1 }

jmQueueJobIndex� TC "jmQueueJobIndex" \I 3 �� XE jmQueueJobIndex � OBJECT-TYPE
SYNTAX Integer32(1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The job's identifier generated by the server or device when that server or device accepted the job. This value permits the management application to access the other tables to obtain the job-specific objects. This value shall be the same for a job in the jmQueueTable as the corresponding jmJobIndex value in the jmJobTable for this job.

The value 0 shall not be generated. Agents instrumenting systems that contain jobs with a job identifier of 0 shall map the value 0 to a value that is one higher than the highest job identifier value that any job can have on that system."
::= { jmQueueEntry 2 }

jmQueueNumberOfInterveningJobs� TC "jmQueueNumberOfInterveningJobs" \I 3 �� XE jmQueueNumberOfInterveningJobs � OBJECT-TYPE
SYNTAX Integer32(0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of jobs that are expected to be processed before this job is processed according to the implementation's queuing algorithm if no other jobs were to be submitted. The agent shall return a value of 0 for this object when the job starts processing."
::= { jmQueueEntry 3 }

jmJobPriority� TC "jmJobPriority" \I 3 �� XE jmJobPriority � OBJECT-TYPE
SYNTAX Integer32(0..100)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This attribute specifies a priority for scheduling the job. It is used by servers and devices that employ a priority-based scheduling algorithm.

A higher value specifies a higher priority. The value 1 is defined to indicate the lowest possible priority (a job which a priority-based scheduling algorithm shall pass over in favor of higher priority jobs). The value 100 is defined to indicate the highest possible priority. Priority is expected to be evenly or 'normally' distributed across this range. The mapping of vendor-defined priority over this range is implementation-specific.

A value of 0 shall be returned by implementations that do not have a priority-based queuing algorithm."
::= { jmQueueEntry 4 }

jmJobProcessAfterDateAndTime� TC "jmJobProcessAfterDateAndTime" \I 3 �� XE jmJobProcessAfterDateAndTime � OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object specifies the calendar date and time of day after which the job shall become a candidate to be scheduled for processing. If the value of this attribute is in the future, the server shall set the value of the job's jmJobCurrentState to held and add the jobProcessAfterSpecified bit value to the job's jmJobStateReasons object and shall not schedule the job for processing until the specified date and time has passed. When the specified date and time arrives, the server shall remove the jobProcessAfterSpecified bit value from the job's jmJobStateReasons object and, if no other reasons remain, shall change the job's jmJobCurrentState to pending so that the job becomes a candidate for being scheduled on devices(s).

The server shall assign an empty value to the jmJobProcessAfterDateAndTime object when no process after time has been specified, so that the job shall be a candidate for processing immediately."
::= { jmQueueEntry 5 }

�� TC "The Completed Group (Mandatory)" \I 2 �
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--�The Completed Group (Mandatory)

The jmCompletedGroup consists entirely of the jmCompletedTable which is an ordered list of the jobs in the job set that have completed processing, i.e., jobs that are in the terminating, retained or completed state. The jmCompletedTable is indexed by:

jmJobSetIndex - a running index of Job Set instances supported by this device or server. A job set is used in the MIB to represent the separation of jobs into disjoint sets for scheduling purposes in a server, typically into separate job queues. See for the definition of a job set.

jmCompletedIndex - a running index of the jobs that have finished processing.

Implementation of every object in this group is mandatory. See Sectio��
jmCompleted OBJECT IDENTIFIER ::= { jobmonmib 7 }

jmCompletedTable OBJECT-TYPE
SYNTAX SEQUENCE OF JmCompletedEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of pointers to jobs that have finished processing, have been cancelled by a user or operator, or the system has aborted."
::= { jmCompleted 1 }

jmCompletedEntry OBJECT-TYPE
SYNTAX JmCompletedEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A pointer to a job that has finished processing.

An entry shall exist in this table for each job that has finished processing, due to normal completion, cancellation by a user, or termination by the system."
INDEX { jmJobSetIndex, jmCompletedIndex }
::= { jmCompletedTable 1 }

JmCompletedEntry ::= SEQUENCE {
jmCompletedIndex�Integer32(1..2147483647),��jmCompletedJobIndex�Integer32(1..2147483647)��}

jmCompletedIndex� TC "jmCompletedIndex" \I 3 �� XE jmCompletedIndex � OBJECT-TYPE
SYNTAX Integer32(1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The 32-bit index of the jobs that are in the retained or completed states. The agent shall add jobs to the end of the jmCompletedTable, so that monitor programs can quickly determine what jobs have completed since the last time that the monitoring programs accessed the jmCompletedTable. The index values shall be monatonically increasing. Therefore, the order of the jobs specified by the value of this index shall be the order in which the jobs finished processing.

Since the jmCompletedIndex shall roll over when the jmCompletedIndex would have reached 2^31 (but no lower), monitoring programs shall handle such roll over."
::= { jmCompletedEntry 1 }

jmCompletedJobIndex� TC "jmCompletedJobIndex" \I 3 �� XE jmCompletedJobIndex � OBJECT-TYPE
SYNTAX Integer32(1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The job's identifier generated by the server or device when that server or device accepted the job. This value permits the management application to access the other tables to obtain the job-specific objects. This value shall be the same for a job in the jmQueueTable as the corresponding jmJobIndex value in the jmJobTable for this job.

The value 0 shall not be generated. Agents instrumenting systems that contain jobs with a job identifier of 0 shall map the value 0 to a value that is one higher than the highest job identifier value that any job can have on that system."
::= { jmCompletedEntry 2 }

�

� TC "The Job ID Group (Mandatory)"\ 2 �
-- The Job ID Group (Mandatory)

-- The jmJobIDGroup consists entirely of the jmJobIDTable.
--
-- The two key indexes that are used in other tables to index jobs:
-- jmJobSetIndex and jmJobIndex are materialized in this group.
--
-- Implementation of every object in this group is mandatory.
-- See Section � REF _Ref378522947 \n �4� entitled '� REF _Ref378522965 * MERGEFORMAT �Conformance Considerations�' on page � PAGEREF _Ref378522970 �26�.

jmJobID OBJECT IDENTIFIER ::= { jobmonmib 6 }

jmJobIDTable OBJECT-TYPE
SYNTAX SEQUENCE OF JmJobIDEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The jmJobIDTable provides a correspondence (map) from the job submission ID that a client uses to refer to a job and the jmJobSetIndex and jmJobIndex that the Job Monitoring MIB agent assigned to the job and that is used to access the job in all of the other tables in the MIB. If a monitoring application already knows the jmJobIndex of the job it is querying, that application need not use the jmJobIDTable.

See � REF _Ref382970318 * MERGEFORMAT �Terminology and Job Model� on page � PAGEREF _Ref382970321 �10� for the definition of a job set.

The jmJobIDTable is indexed by:

jmJobSubmissionIDIndex - a 32-octet job identifier generated when the job was submitted, either by the client or the server/printer.
::= { jmJobID 1 }

jmJobIDEntry OBJECT-TYPE
SYNTAX JmJobIDEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The map from (1) the jmJobSubmissionIDIndex to (2) the jmJobSetIdIndex and jmJobIndex.

An entry shall exist in this table for each job, no matter what the state of the job and no matter what job set the job is in. Each job shall appear in one and only one job set."
INDEX { jmJobSubmissionIDIndex }
::= { jmJobIDTable 1 }

JmJobIDEntry ::= SEQUENCE {
jmJobSubmissionIDIndex�OCTET STRING(SIZE(0..63)),��jmJobIDSetIndex�Integer32(1..2147483647),��jmJobIDJobIndex�Integer32(1..2147483647),��}

jmJobSubmissionIDIndex� TC "jmJobSubmissionIDIndex" \I 3 �� XE jmJobSubmissionIDIndex � OBJECT-TYPE
SYNTAX OCTET STRING(SIZE(0..63))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A quasi-unique string ID which identifies the job uniquely within a particular client-server environment. Either the client or the server assigns the job submission ID for each job. The monitoring application whether in the client or running separately, uses the job submission ID to help the user identify which jmJobIndex was assigned by the agent.

There are multiple formats for the jmJobSubmissionCurrentIDIndex. Each format shall be registered using the procedures of a type 2 enum. See section entitled: '� REF _Ref385148321 * MERGEFORMAT �IANA Registration of enums�' on page � PAGEREF _Ref385148333 �28�.

The value of jmJobSubmissionIDIndex should be one of the registered format types. The first two octets of the string shall indicate which registered format is being used. The agent shall assign a string of registered format (00) for any job without a value. The format values registered so far are:

 Format
 Number Description
 ------ ------------
 00 Set by the agent when neither the client nor the
 server assigned a job submission ID.

 01 octets 3-10: 8-decimal-digit random number
 octets 11-32: last 22 bytes of the jobName attribute

 02 octets 3-10: 8-decimal-digit sequential number
 octets 11-32: Client MAC address

 03 octets 3-10: 8-decimal-digit sequential number
 octets 11-32: last 22 bytes of the client URL

 04 to be registered according to procedures of a type 2
 enum.

NOTE - the job submission id only intended to be unique between a limited set of clients for a limited duration of time, namely for the life time of the job in the context of the server or device that is processing the job. Some of the formats include something that is unique per client and a random number so that the same job submitted by the same client will have a different job submission id. For other formats, where part of the id is guaranteed to be unique for each client, such as the MAC address or URL, a sequential number should suffice for each client (and may be easier for each client to manage). Therefore, the length of the job submission id has been selected to reduce the probability of collision to a very low number, but is not intended to be an absolute guarantee of uniqueness. None-the-less, collisions could occur, but without bad consequences, since this MIB is intended to be used only for monitoring jobs, not for controlling and managing them."
::= { jmJobIDEntry 1 }

jmJobIDSetIndex� TC "jmJobSetIndex" \I 3 �� XE jmJobSetIndex � OBJECT-TYPE
SYNTAX Integer32(1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The job set index of the job set in which the job was placed when that server or device accepted the job. This value in combination with the jmIdJobIndex value permits the management application to access the other tables to obtain the job-specific objects. This value shall be the same for a job in the jmJobIDTable as the corresponding jmJobSetIndex value in the jmJobStateTable and jmAttributeTable for this job.

NOTE - an implementation that has only one job set, such as a printer with a single queue, shall hard code this object with the value 1. See � REF _Ref382970318 * MERGEFORMAT �Terminology and Job Model� on page � PAGEREF _Ref382970321 �10� for the definition of a job set."
::= { jmJobIDEntry 2 }

jmIDJobIndex� TC "jmIDJobIndex" \I 3 �� XE jmIDJobIndex � OBJECT-TYPE
SYNTAX Integer32(1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The sequential, monatonically increasing identifier for the job generated by the server or device when that server or device accepted the job. This value permits the management application to access the other tables to obtain the job-specific objects. This value shall be the same for a job in the jmJobSubmissionIDTable as the corresponding jmJobIndex value in the jmJobStateTable and jmAttributeTable for this job.

The value 0 shall not be generated. Agents instrumenting systems that contain jobs with a job identifier of 0 shall map the value 0 to a value that is one higher than the highest job identifier value that any job can have on that system."
::= { jmJobIDEntry 3 }

� TC "The Job State Group (Mandatory)"\ 2 �
-- The Job State Group (Mandatory)

-- The jmJobStateGroup consists entirely of the jmJobStateTable.
--
-- Implementation of every object in this group is mandatory.
-- See Section � REF _Ref378522947 \n �4� entitled '� REF _Ref378522965 * MERGEFORMAT �Conformance Considerations�' on page � PAGEREF _Ref378522970 �26�.

jmJobState OBJECT IDENTIFIER ::= { jobmonmib 78 }

jmJobStateTable OBJECT-TYPE
SYNTAX SEQUENCE OF JmJobStateEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The jmJobStateTable consists of basic job stateidentification and status information for each job in a job set that (1) monitoring applications need to be able to access in a single SNMP Get operation, (2) that have a single value per job, and (3) that shall always be implemented. See � REF _Ref382970318 * MERGEFORMAT �Terminology and Job Model� on page � PAGEREF _Ref382970321 �10� for the definition of a job set.

NOTE - Every accessible object in this table shall have the same value as one of the attributes in the jmAttributeTable. Implementations may either keep a separate copy or may share each value that is common between the jmJobStateTable and the jmAttributeTable. The persistence of the two tables may be different depending on implementation and/or system administrator policy as specified by the jmGeneralJobPersistence and jmGeneralAttributePersistence objects defined on page � PAGEREF jmGeneralJobPersistence �69�. Thus an accounting application need only copy the entire jmAttributeTable or selected job rows and will obtain all of the information about the job and its state.

The jmJobStateTable is indexed by:

jmJobSetIndex - a running index of Job Set instances supported by this device or server. A job set is used in the MIB to represent the separation of jobs into disjoint sets for scheduling purposes in a server, typically into separate job queues. See � REF _Ref382970318 * MERGEFORMAT �Terminology and Job Model� on page � PAGEREF _Ref382970321 �10� for the definition of a job set.

jmJobIndex - the job identifier that was generated by the server or device that accepted the job."
::= { jmJobState 1 }

jmJobStateEntry OBJECT-TYPE
SYNTAX JmJobStateEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Basic per-job stateidentification and status information.

An entry shall exist in this table for each job, no matter what the state of the job is. Each job shall appear in one and only one job set."
INDEX { jmJobSetIndex, jmJobIndex }
::= { jmJobStateTable 1 }

JmJobStateEntry ::= SEQUENCE {
-- Job Identification (I) objects:
jmJobIndex�Integer32(1..2147483647),��jmJobName�OCTET STRING(SIZE(0..63)),��jmJobIdName�OCTET STRING(SIZE(0..63)),��jmJobIdNumber�Integer32(0..2147483647),��jmJobServiceTypes�Integer32(1..2147483647),
-- JmJobServiceTypesTC��jmJobOwner�OCTET STRING(SIZE(0..63)),��jmJobDeviceNameOrQueueRequested�OCTET STRING(SIZE(0..63)),��jmJobCurrentState�JmJobStateTC,��jmJobStateReasons�OCTET STRING(SIZE(0..63))
-- encoded as a bit string��jmJobStateKOctetsCompleted�Integer32(0..2147483647),��jmJobStateImpressionsCompleted�Integer32(0..2147483647),��jmJobStateAssociatedValue�Integer32(0..2147483647)��}

--
--
--
--
--�Job Identification (I) objects

The following jmJobGroup objects identify the job to the user of the management application which may be acting in the role of an end-user or a system operator:��
jmJobIndex� TC "jmJobIndex" \I 3 �� XE jmJobIndex � OBJECT-TYPE
SYNTAX Integer32(1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The identifier of the job on the device or server. The job's identifier is generated by the server or device when that server or device accepted the job. However, if the device does not generate a job identifier for each job, then the Job Monitoring MIB agent shall generate the job identifier for the job.

The value 0 shall not be generated. Agents instrumenting systems that contain jobs with a job identifier of 0 shall map the value 0 to a value that is one higher than the highest job identifier value that any job can have on that system."
::= { jmJobEntry 1 }

jmJobName� TC "jmJobName" \I 3 �� XE jmJobName � OBJECT-TYPE
SYNTAX OCTET STRING(SIZE(0..63))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object is the human readable string name of the job as assigned by the submitting user to help the user distinguish between his/her various jobs. This name does not need to be unique.

This attribute is intended for enabling a user or the user's application to convey a job name that may be printed on a start sheet, returned in a query result, or used in notification or logging messages.

If this attribute is not specified when the job is submitted, no job name is assumed, but implementation specific defaults are allowed, such as the value of the documentName(4) resource item of the first document in the job or the fileName(3) resource item of the first document in the job.

The jmJobName is distinguished from the jobComment attribute, in that the jmJobName is intended to permit the submitting user to distinguish between different jobs that he/she has submitted. The jobComment attribute is intended to be free form additional information that a user might wish to use to communicate with himself/herself, such as a reminder of what to do with the results or to indicate a different set of input parameters were tried in several different job submissions."
::= { jmJobEntry 2 }

jmJobIdName� TC "jmJobIdName" \I 3 �� XE jmJobIdName � OBJECT-TYPE
SYNTAX OCTET STRING(SIZE(0..63))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Identifies the job on the "client-side" of the printing process as coded character set data in combination with the jmJobIdNumber object.

The jmJobIdName and the jmJobIdNumber objects are referred to as the "client-side" identifiers because they allow the user, operator, or the system administrator to uniquely identify the print jobs of interest from all the jobs currently "known" by the server or device.

The client-side identifiers can be assigned by either the job submission client's local system or a downstream server, depending on implementation and the job submission protocol. The format of the coded character set data and point of assignment of the client-side identifiers depend upon the job submission protocol in use. See Appendix A on page for the mapping from selected job submission protocols to these client-side job identifiers.

Unlike jmJobName, which is assigned by the submitting user, the jmJobIdName and jmJobIdNumber client-side identifiers provide for unique identification of jobs.

The jmJobIdName object may be used alone or in conjunction with the jmJobIdNumber object, depending upon the format of the job submission protocol client side identifier. For example, the LPD job identifier normally contains three alpha characters followed by a three digit number. The agent may represent the alpha portion by jmJobIdName and the numeric portion by jmJobIdNumber. Alternatively, the agent may represent the LPD client-side id entirely in the jmJobIdName object."
::= { jmJobEntry 3 }

jmJobIdNumber� TC "jmJobIdNumber" \I 3 �� XE jmJobIdNumber � OBJECT-TYPE
SYNTAX Integer32(0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Identifies the job on the "client-side" of the printing process in combination with the jmJobIdName object. This object may be used alone or in conjunction with the jmJobIdName object, depending upon the format of the job submission protocol client-side identifier. Refer to the jmJobIdName object specification.

If the value of this object is unknown, the agent shall return the value (-2)."
::= { jmJobEntry 4 }

jmJobServiceTypes� TC "jmJobServiceTypes" \I 3 �� XE jmJobServiceTypes � OBJECT-TYPE
SYNTAX Integer32(1..2147483647) --See JmJobServiceTypesTC on page
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Specifies the type(s) of service to which the job has been submitted (print, fax, scan, etc.). The service type is represented as an enum that is bit encoded with each job service type so that more general and arbitrary services can be created, such as services with more than one destination type, or ones with only a source or only a destination. For example, a job service might scan, fax, and print a single job. In this case, three bits would be set in the jmJobServiceTypes object, corresponding to the values: 8+32+4=44, respectively.

Whether this object is set from a job attribute supplied by the job submission client or is set by the recipient job submission server or device depends on the job submission protocol. With either implementation, the agent shall return a non-zero value for this object indicating the type of the job.

One of the purposes of this object is to permit a requester to filter out jobs that are not of interest. For example, a printer operator may only be interested in jobs that include printing. That is why the object is in the job identification category.

This object is a type 2 enum.

The JmJobServiceTypesTC textual convention defines component types as separate bit value in the enum. See page ."
::= { jmJobEntry 5 }

jmJobOwner� TC "jmJobOwner" \I 3 �� XE jmJobOwner � OBJECT-TYPE
SYNTAX OCTET STRING(SIZE(0..63))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The coded character set name of the user that submitted the job. The method of assigning this user name will be system and/or site specific but the method must insure that the name is unique to the network that is visible to the client and target device.

This value should be the authenticated name of the user submitting the job."
::= { jmJobEntry 6 }

jmJobDeviceNameOrQueueRequested� TC "jmJobDeviceNameOrQueueRequested" \I 3 �� XE jmJobDeviceNameOrQueueRequested � OBJECT-TYPE
SYNTAX OCTET STRING(SIZE(0..63))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The administratively defined coded character set name of the target device or queue. Its value corresponds to the Printer MIB: prtGeneralAdminName object (added to the draft Printer MIB) for printers. For servers, this object is the name that users supply to indicate whether they want the job to be processed, typically, but not limited to, a job queue name or logical printer name."
::= { jmJobEntry 7 }

jmJobCurrentState� TC "jmJobCurrentState" \I 3 �� XE jmJobCurrentState � OBJECT-TYPE
SYNTAX JmJobStateTC -- See page � PAGEREF _Ref378608628 �32�
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current state of the job (pending, processing, held, etc.).

The value of this object shall always be the same as that of the jobState attribute, so that this information appears in both the jmJobStateTable and the jmAttributeTable simultaneously. See the JmJobStateTC textual-convention on page � PAGEREF _Ref385171238 �32� and the jobState attribute on page � PAGEREF jobState �39� in the jmAttributeTable for the full specification of this object/attribute.Management applications shall be prepared to receive all the standard job states. Servers and devices are not required to generate all job states, only those which are appropriate for the particular implementation.

A companion textual convention (JmJobStateReasonsTC) and corresponding object (jmJobStateReasons) provide additional information about job states. While the job states cannot be added to without impacting deployed clients, it is the intent that additional JmJobStateReasonsTC enums can be defined without impacting deployed clients. In other words, the JmJobStateReasonsTC is intended to be extensible. See page .

This object is a type 2 enum."
::= { jmJobStateEntry 18 }

jmJobStateReasons� TC "jmJobStateReasons" \I 3 �� XE jmJobStateReasons � OBJECT-TYPE
SYNTAX OCTET STRING(SIZE(0..63)) -- encoded as a bit string
 -- See JmJobStateReasonsTC
 -- on page
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object provides additional information regarding the jmJobCurrentState object. This object identifies the reason or reasons that the job is in the preProcessing, held, pending, processing, needsAttention, paused, interrupted, terminating, retained, or completed state. The server shall indicate the particular reason(s) by setting the value of the jmJobStateReasons object. While the job states cannot be added to without impacting deployed clients, it is the intent that additional JmJobStateReasonsTC enums can be defined without impacting deployed clients. In other words, the JmJobStateReasonsTC is intended to be extensible. See page .

When the job does not have any reasons for being in its current state, the server shall set the value of the jmJobStateReasons object to a bit string containing all zeros.

Bits in the bit string are assigned starting with the most significant bit in the most significant octet which is called bit 1. Bit 2 is the next most significant bit in the most significant octet, etc. Bit 9 is the most significant bit in the second most significant octet, etc., up to the maximum bit: 504 (= 8 x 63). See JmJobStateReasonsTC on page

An agent only need return the most significant octet up to the least significant octet that contains a non-zero bit.

If all bits are zero, the agent may return an OCTET STRING of zero length. Alternatively, an agent may always return a fixed number of octets starting with the most significant octet and running through the least significant octet that could ever have a one bit in it for that implementation.

This object is a type 2 bit string. See Section "
::= { jmJobEntry 9 }

jmJobStateKOctetsCompleted� TC "jmJobStateKOctetsCompleted" \I 3 �� XE jmJobStateKOctetsCompleted� OBJECT-TYPE
SYNTAX Integer32(0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current number of octets completed processing by the server or device measured in units of K (1024) octets.

The value of this object shall always be the same as that of the jobKOctetsCompleted attribute, so that this information appears in both the jmJobStateTable and the jmAttributeTable simultaneously. See the jobKOctetsCompleted attribute on page � PAGEREF jobKOctetsCompleted �49� in the jmAttributeTable for the full specification of this object/attribute."
::= { jmJobStateEntry 2 }

jmJobStateImpressionsCompleted� TC "jmJobStateImpressionsCompleted" \I 3 �� XE jmJobStateImpressionsCompleted� OBJECT-TYPE
SYNTAX Integer32(0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current number of impressions completed being marked and stacked by the device for this job so far.

The value of this object shall always be the same as that of the impressionsCompleted attribute, so that this information appears in both the jmJobStateTable and the jmAttributeTable simultaneously. See the impressionsCompleted attribute on page � PAGEREF impressionsCompleted �50� in the jmAttributeTable for the full specification of this object/attribute."
::= { jmJobStateEntry 3 }

jmJobStateAssociatedValue� TC "jmJobStateAssociatedValue" \I 3 �� XE jmJobStateAssociatedValue� OBJECT-TYPE
SYNTAX Integer32(0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of the most relevant attribute associated with the job's current state.

The value of this object shall always be the same as that of the jobStateAssociatedValue attribute, so that this information appears in both the jmJobStateTable and the jmAttributeTable simultaneously. See the jobStateAssociatedValue attribute on page � PAGEREF jobStateAssociatedValue �39� in the jmAttributeTable for the full specification of this object/attribute."
::= { jmJobStateEntry 4 }

�
� TC "The Attribute Group (Mandatory)" \I 2 �
-- The Attribute Group (Mandatory)

-- The jmAttributeGroup consists entirely of the jmAttributeTable.
--
-- Implementation of every object in this group is mandatory.
-- See Section � REF _Ref378522947 \n �4� entitled '� REF _Ref378522965 * MERGEFORMAT �Conformance Considerations�' on page � PAGEREF _Ref378522970 �26�.
--
-- Some attributes are mandatory for conformance, and the rest are
-- optional. The mandatory attributes are the ones required to have
-- copies in the jmJobStateTable. The mandatory attributes are:
--
-- jobState
-- numberOfInterveningJobs
-- deviceAlertCode
-- jobKOctetsRequestedTotal
-- jobKOctetsCompleted
-- impressionsRequestedTotal
-- impressionssheetsCompleted
-- outputBinNameIndex

jmAttribute OBJECT IDENTIFIER ::= { jobmonmib 89 }

jmAttributeTable OBJECT-TYPE
SYNTAX SEQUENCE OF JmAttributeEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The jmAttributeTable shall contains attributes of the job and document(s) for each job in a job set. Instead of allocating distinct objects for each attribute, each attribute item is represented as a separate row in the jmAttributeTable. Some attributes may represent information about the job and document(s), such as file-names, document-names, submission-time, completion-time, size, etc. Other aAttributes may also represent requested and/or consumed resources for each job.

The jmAttributeTable is a per-job table with an extra index for each type of attribute (jmAttributeTypeIndex) that a job can have and an additional index (jmAttributeInstanceIndex) for those attributes that can have multiple instances per job. The jmAttributeTypeIndex object shall contain an enum type that indicates the type of attribute (see JmAttributeTypeTC on page � PAGEREF JmAttributeTypeTC �37�). The value of the attribute shall be represented in either the jmAttributeValueAsInteger or jmAttributeValueAsOctets objects, or both, as specified in the JmAttributeTypeTC on page � PAGEREF JmAttributeTypeTC �37�.

The agent shall create rows in the jmAttributeTable as the server or printer is able to discover the attributes either from the job submission protocol itself or from the document PDL. As the documents are interpreted, the interpreter may discover additional attributes and so the agent adds additional rows to this table. As the resources are actually consumed, the usage counter contained in the jmAttributeValueAsInteger object is incremented according to the units indicated in the description of the JmAttributeTypeTC enum.

The jmAttributeTable is indexed by (from most significant to least significant):

jmJobSetIndex - a running index of Job Set instances supported by this device or server. A job set is used in the MIB to represent the separation of jobs into disjoint sets for scheduling purposes in a server, typically into separate job queues. See � REF _Ref382970318 * MERGEFORMAT �Terminology and Job Model� on page � PAGEREF _Ref382970321 �10� for the definition of a job set.

jmJobIndex - the job identifier that was generated by the server or device that accepted the job.

jmAttributeTypeIndex - the enum that indicates the type of the attribute. See JmAttributeTypeTC on page � PAGEREF JmAttributeTypeTC �37� for the specification of each attribute.

jmAttributeInstanceIndex - a running index of attributes of the same type for each job. For those attributes with only a single instance per job, this index value shall be 1. For those attributes that are a single value per document, the index value shall be the document number, starting with 1 for the first document in the job. Jobs with only a single document shall use the index value of 1. For those attributes that can have multiple values per job and per document, such as documentFormatIndex or documentFormatEnum, the index shall be a running index for the job as a whole, starting at 1."
::= { jmAttribute 1 }

jmAttributeEntry OBJECT-TYPE
SYNTAX JmAttributeEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Attributes representing information about the job and document(s) or resources required and/or consumed.

Zero or more entries shall exist in this table for each job in a job set. Each job shall appear in one and only one job set."
INDEX { jmJobSetIndex, jmJobIndex, jmAttributeTypeIndex, jmAttributeInstanceIndex }
::= { jmAttributeTable 1 }

JmAttributeEntry ::= SEQUENCE {
jmAttributeTypeIndex�JmAttributeTypeTC,��jmAttributeInstanceIndex�Integer32(1..32767),��jmAttributeValueAsInteger�Integer32(0..2147483647),��jmAttributeValueAsOctets�OCTET STRING(SIZE(0..63))��}

jmAttributeTypeIndex� TC "jmAttributeTypeIndex" \I 3 �� XE jmAttributeTypeIndex � OBJECT-TYPE
SYNTAX JmAttributeTypeTC -- See page � PAGEREF JmAttributeTypeTC �37�
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The type of attribute.

The type may identify information about the job or document(s) or may identify a resource required to process the job before the job start processing and/or consumed by the job as the job is processed.

Examples of job and document information include: jobCopiesRequested, documentCopiesRequested, jobCopiesCompleted, documentCopiesCompleted, fileName, and documentName.

Examples of resources required and consumed include: jobKOctetsRequestedTotal, jobKOctetsCompleted, pagesRequested, pagesCompleted, mediumRequested, and mediumConsumed, respectively. See the JmAttributeTypeTC textual convention on page � PAGEREF JmAttributeTypeTC �37�.

In the definitions of the enums in the JmAttributeTypeTC textual convention, each description indicates whether the value of the attribute shall be represented using the jmAttributeValueAsInteger or the jmAttributeValueAsOctets objects by the initial tag: 'Integer:' or 'Octets:', respectively. A very few attributes use both objects (mediumConsumed)and so have both tags.

If the jmAttributeValueAsInteger object is not used (no 'Integer:' tag), the agent shall return the value (-1) indicating other. If the jmAttributeValueAsOctets object is not used (no 'Octets:' tag), the agent shall return a zero-length octet string.

This value is a type 2 enum."
::= { jmAttributeEntry 1 }

jmAttributeInstanceIndex� TC "jmAttributeInstanceIndex" \I 3 �� XE jmAttributeInstanceIndex � OBJECT-TYPE
SYNTAX Integer32(1..32767)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A running 16-bit index of the attributes of the same type for each job. For those attributes with only a single instance per job, this index value shall be 1. For those attributes that are a single value per document, the index value shall be the document number, starting with 1 for the first document in the job. Jobs with only a single document shall use the index value of 1. For those attributes that can have multiple values per job and per document, such as documentFormatIndex or documentFormatEnum, the index shall be a running index for the job as a whole, starting at 1.

Each job shall be identified by jmJobIndex value and each job shall be in one job set identified by jmJobSetIndex."
::= { jmAttributeEntry 2 }

jmAttributeValueAsInteger� TC "jmAttributeValueAsInteger" \I 3 �� XE jmAttributeValueAsInteger � OBJECT-TYPE
SYNTAX Integer32(0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The integer value of the attribute. The value of the attribute shall be represented as an integer if the enum description JmAttributeTypeTC definition (see JmAttributeTypeTC on page � PAGEREF JmAttributeTypeTC �37�) has the tag: 'Integer:'.

Depending on the enum definition, this object value may be an integer, a counter, an index, or an enum, depending on the jmAttributeTypeIndex value. The units of this value are specified in the enum description.

For those attributes that are accumulating job consumption as the job is processed as specified in the JmAttributeTypeTC, shall contain the final value after the job completes processing, i.e., this value shall indicate the total usage of this resource made by the job.

A monitoring application is able to copy this value to a suitable longer term storage for later processing as part of an accounting system.

Since the agent may add attributes representing resources to this table while the job is waiting to be processed or being processed, which can be a long time before any of the resources are actually used, the agent shall set the value of the jmAttributeValueAsInteger object to 0 for resources that the job has not yet consumed.

Attributes for which the concept of an integer value is meaningless, such as fileName, interpreter, and physicalDeviceName, do not have the 'Integer:' tag in the JmAttributeTypeTC definition and so shall return a value of (-1) to indicate other for jmAttributeValueAsInteger."
::= { jmAttributeEntry 3 }

jmAttributeValueAsOctets� TC "jmAttributeValueAsOctets" \I 3 �� XE jmAttributeValueAsOctets � OBJECT-TYPE
SYNTAX OCTET STRING(SIZE(0..63))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The octet string value of the attribute. The value of the attribute shall be represented as an OCTET STRING if the enum description JmAttributeTypeTC definition (see JmAttributeTypeTC on page � PAGEREF JmAttributeTypeTC �37�) has the tag: 'Octets:'.

Depending on the enum definition, this object value may be a coded character set string (text) or a binary octet string, such as DateAndTime.

Attributes for which the concept of an octet string value is meaningless, such as pagesCompleted, do not have the tag 'Octets:' in the JmAttributeTypeTC definition and so shall return a value of a zero length string for jmAttributeValueAsOctets."
::= { jmAttributeEntry 4 }

�-- Conformance Information

jmMIBConformance OBJECT IDENTIFIER ::= { jobmonmib 2 }

-- compliance statements
jmMIBCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for agents that implement the
job monitoring MIB."
MODULE -- this module
MANDATORY-GROUPS {
jmGeneralGroup, jmCompletedGroup, jmJobIDGroup, jmJobStateGroup, jmAttributeGroup }

OBJECT jmJobCurrentState
SYNTAX INTEGER {
processing(57),��needsAttention(79),��canceled(8)��completed(917)��}
DESCRIPTION
"It is conformant for an agent to implement just these fourthree states in this object. Any additional states are conditionally mandatory, i.e., an agent shall represent any additional states that the server or device implementsoptional. However, a client shall accept all of the states from an agent."

-- OBJECT jmAttributeTypeIndex
-- SYNTAX INTEGER {
-- jobState(2)
-- numberOfInterveningJobs(5)
-- deviceAlertCode(6)
-- jobKOctetsRequested(30)
-- jobKOctetsCompleted(31)
-- impressionsRequested(35)
-- impressionsCompleted(36)
-- outputBinName(22)
-- }
-- DESCRIPTION
--"It is conformant for an agent to implement just these 8
-- attributes. Any additional attributes are conditionally
-- mandatory, i.e., an agent shall represent any additional
-- states that the server or device implements. However, a
-- client shall accept all of the attributes from an agent and
-- either display them to its user or ignore them.
--
-- NOTE - SMI does not allow an enum to be declared as mandatory
-- if that enum is not a member of a group, but
-- jmAttributeTypeIndex cannot be a member of a group and still
-- be not-accessible. So comment the mandatory attributes as if
-- SMI allowed such a declaration in order to declare the
-- mandatory attributes."

-- There are no conditionally mandatory or optional groups.

--
--
--�the jmQueueGroup is conditionally mandatory. An agent shall implement the jmQueueGroup if the server or device that the agent instruments performs queuing.��::= { jmMIBConformance 1 }

jmMIBGroups OBJECT IDENTIFIER ::= { jmMIBConformance 2 }

jmGeneralGroup OBJECT-GROUP
OBJECTS {
jmGeneralJobSetName, jmGeneralJobPersistenceCompletedPolicy,
jmGeneralAttributePersistence, jmGeneralMaxNumberOfJobs, jmGeneralNumberOfActiveJobsToComplete, jmGeneralOldestActiveJobIndex,
jmGeneralNumberOfJobsCompleted, jmGeneralNewestActiveJobIndex }
STATUS current
DESCRIPTION
"The general group."
::= { jmMIBGroups 1 }

jmQueueGroup OBJECT-GROUP
OBJECTS {
jmQueueJobIndex, jmQueueNumberOfInterveningJobs, jmJobPriority, jmJobProcessAfterDateAndTime }
STATUS current
DESCRIPTION
"The queue group - conditionally mandatory."
::= { jmMIBGroups 2 }

jmCompletedGroup OBJECT-GROUP
OBJECTS {
jmCompletedJobIndex }
STATUS current
DESCRIPTION
"The completed group."
::= { jmMIBGroups 3 }

jmJobIDGroup OBJECT-GROUP
OBJECTS {
jmJobSetIndex, jmJobIndex }
STATUS current
DESCRIPTION
"The job ID group."
::= { jmMIBGroups 2 }

jmJobStateGroup OBJECT-GROUP
OBJECTS {
jmJobName, jmJobIdName, jmJobIdNumber, jmJobServiceTypes, jmJobOwner, jmJobDeviceNameOrQueueRequested, jmJobCurrentState, jmJobStateKOctetsCompleted, jmJobStateImpressionsCompleted, jmJobStateAssociatedValuejmJobStateReasons }
STATUS current
DESCRIPTION
"The job state group."
::= { jmMIBGroups 34 }

jmAttributeGroup OBJECT-GROUP
OBJECTS {
jmAttributeValueAsInteger, jmAttributeValueAsOctets }
STATUS current
DESCRIPTION
"The attribute group."
::= { jmMIBGroups 5 }

END
�Appendix A - Job Life Cycle
Job Life Cycle
The job object has well-defined states and client operations that affect the transition between the job states. Internal server and printer actions also affect the transitions of the job between the job states. These states and transitions are referred to as the job's life cycle.
Not all implementations of job submission protocols have all of the states of the job model specified here. The job model specified here is intended to be a superset of most implementations. It is the purpose of the agent to map the particular implementation's job life cycle onto the one specified here. The agent may omit any states not implemented. Only the processing, needsAttention, canceled, and completed states are required to be implemented by an agent. However, a management application shall be prepared to accept any of the states in the job life cycle specified here, so that the management application can interoperate with any conforming agent.
The job states are intended to be the user visible. The agent shall make these states visible in the MIB, but only for the subset of job states that the implementation has. Implementations may need to have sub-states of these user-visible states. Such implementation is not specified in this model, is not supported by this Job Monitoring MIB, and will vary from implementation to implementation.
One of the purposes of the job model is to specify what is invariant from implementation to implementation as far as the MIB specification and the user is concerned. Therefore, job states are all intended to last a user-visible length of time in most implementations. However, some jobs may pass through some states in zero time in some situations and/or in some implementations.
The job model does not specify how accounting and auditing is implemented, except to require that accounting and auditing logs are separate from the job life cycle and last longer than job objects. Jobs in the completed state are not logs, since jobs in the completed state are accessible via job submission and/or job management protocol operations and are removed from these job tables after a site-settable period of time. Accounting information may be copied incrementally to the accounting logs as a job processes, may be copied while the job is in the retained state, or may be copied while the job is in the completed state, depending on implementation. The same is true for auditing logs.
The jmJobCurrentState object and the jobState attribute both specify the standard job states. The legal job state transitions are shown in the state transition diagram presented in � REF _Ref383612131 * MERGEFORMAT ��Table 11-2�.
�Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC �2� - Legal Job State Transition Table

�New State����"active" jobs���

Old state�unknown
2�held

3�pending
4�processing
5�printing
6�needsAttention
7�canceled
8�completed
9��unknown��yes�yes�yes�yes�����held���yes�yes�yes��yes���pending��yes� �yes�yes��yes���processing��yes���yes�yes�yes�yes��printing��yes����yes�yes�yes��needsAttention��yes��yes�yes��yes���canceled�yes���������completed�yes���������
�Bibliography
[1] The Printer MIB - RFC 1579. Also an Internet-Draft.
Author's Addresses
Ron Bergman
Dataproducts Corp.

Phone: 805-578-4421
Fax:
Email: rbergman@dpc.com

Tom Hastings
Xerox Corporation, ESAE-231
701 S. Aviation Blvd.
El Segundo, CA 90245

Phone: 310-333-6413
Fax: 310-333-5514
EMail: hastings@cp10.es.xerox.com

Scott A. Isaacson
Novell, Inc.
122 E 1700 S
Provo, UT 84606

Phone: 801-861-7366
Fax: 801-861-4025
EMail: scott_isaacson@novell.com

Harry Lewis
IBM Corporation
P.O. Box 1900
Boulder, CO 80301-9191

Phone: (303) 924-5337
Fax:
Email: harryl@vnet.ibm.com

Send comments to:
JMP Mailing List: jmp@pwg.org

JMP Mailing List Subscription Information:
jmp-request@pwg.org

�Other Participants:
Chuck Adams - Tektronix
Jeff Barnett - IBM
Keith Carter, IBM Corporation
Jeff Copeland - QMS
Andy Davidson - Tektronix
Roger deBry - IBM
Mabry Dozier - QMS
Lee Ferrel - Canon
Steve Gebert - IBM
Robert Herriot - Sun Microsystems Inc.
Shige Kanemitsu - Kyocera
David Kellerman - Northlake Software
Rick Landau - Digital
Harry Lewis - IBM
Pete Loya - HP
Ray Lutz - Cognisys
Jay Martin - Underscore
Mike MacKay, Novell, Inc.
Stan McConnell - Xerox
Carl-Uno Manros, Xerox, Corp.
Pat Nogay - IBM
Bob Pentecost - HP
Rob Rhoads - Intel
David Roach - Unisys
Hiroyuki Sato - Canon
Bob Setterbo - Adobe
Gail Songer, EFI
Mike Timperman - Lexmark
Randy Turner - Sharp
William Wagner - Digital Products
Jim Walker - Dazel
Chris Wellens - Interworking Labs
Rob Whittle - Novell
Don Wright - Lexmark
Lloyd Young - Lexmark
Atsushi Yuki - Kyocera
Peter Zehler, Xerox, Corp.
�Change History (not to be included in the Internet Draft)
All future changes will be recorded here in reverse chronological order by version.
Changes to version 0.7, dated 3/13/97 to make version 0.71, dated 3/26/97
Made the formatting changes necessary to make an Internet Draft.
Replaced Figure 1 with a Job State Transition table.
Clarified that an agent shall not return an SNMP error for an instrumented object, but shall return the identifies distinguished value.
Removed the IMPORT for PrtInterpreterLangFamilyTC, since the MIB doesn't actually use this enum. In fact no enums used in the Attributes table actually need their enum TC imported into the Job Monitoring MIB, making the Job Monitoring MIB more extensible for adding new attributes that have textual conventions. The MIB now imports very little. Only DateAndTime, because it is used in the Queue table. Even the TimeStamp TC which is used in the attribute table, need not be imported into the Job Monitoring MIB.
Explained why there is both a jmJobState and a jmJobStateReasons object: so that the reasons can be extended without the monitoring application becoming confused as to what is happening, since the states won't be extended.
Clarified that retained is an optional state and its relationship to the completed state. Added conformance that only the processing, needsAttention, and completed states are required for conformance.
Changed the name of the jmAttributeValueAsText object to jmAttributeValueAsOctets, since the DateAndTime type is binary, not text. Changed the tag in the TC from "Text:" to "Octets".
Changed the name of the mediaConsumed(33) to mediumConsumed(33), since each entry is singular.
Changes to version 0.6, dated 1/23/97 to make version 0.7, dated 3/13/97
Changes to version 0.6, dated 1/23/97 to make version 0.7, dated 1/29/97:
Added PWG agreed boiler plate Status of this Memo.
Updated the Abstract from Ron's comments.
Incorporated Ron's re-written Introduction.
Explained the job set concept as representing a queue within a printer or a server, if the printer or server has several or the entire set of jobs, if the printer or server has only one queue.
Introduced the terminology of "attribute" instead of resource, since our table represents more than just resources now, as we agreed to move many non-resource objects into it. Changed the name of the group and table from jmResource to jmAttribute.
Clarified that the JmAttributeTypeTC and jmAttributeTable contains information about the job, such as file name, document name, , as well as resources requested and/or consumed. Re-organized the attributes into groups of similar attributes.
Added more explanation about configuration 1 and 2 and added Configuration 3 as agreed to cover the case of a monitoring application that monitors a server not using SNMP while also monitoring using our MIB the printer(s) that the server controls.
Added more explanation of the security, internationalization, and IANA considerations.
Deleted the Job Set Group, since the monitoring application can find all the job sets via a Get.
Removed the jmResourceUnits object and specified the units in each jmAttributeTypeIndex enum. This makes it clearer what the units are and reduces the variability between agent implementations, thus making monitoring applications easier. Also cleanup the attribute names by adding the data type to the attribute name for those attributes that have more than one type that differs in the units (Index vs. Name, Name vs. Enum, DateAndTime vs. TimeStamp).
Added the TimeStamp data type as an alternative to DateAndTime and doubled the number of attributes that have to do with time.
Deleted the JmQueuingAlgorithmTC and JmResourceUnitsTC textual-conventions.
Added other(1) and unknown(2) to the JmJobTypesTC and moved the rest of the bits over.
Added other(1) to the JmJobStateTC.
Added jobPrinting(45) to the JmJobStateReasonsTC to align with IPP.
Move 9 objects from the jmJobTable to the JmAttributeTypeTC and jmAttributeTable, making them attributes: jobAccountName, jobComment, jobSourceChannelIndex, physicalDeviceName, jobKOctetsRequested, jobKOctetsCompleted, jobSubmissionDateAndTime, jobSubmissionTime, jobStartedProcessingDateAndTime, jobStartedProcessingTime, jobCompletedDateAndTime, jobCompletedTime. NOTE that some objects became two attributes as we have two forms of time. Also made the end of each name indicate the data type.
Added Requested, Completed, and CompletedCurrentCopy forms for impressions, sheets, and pages attributes.
Added: other(1), outputBin(9) attributes.
Added "CPU" to processingCPUTime attribute.
Added jmGeneralJobSetName so that the user could associate a name with a job set when the implementation had more than one job set. The name would typically be the queue name in such a case.
Added jmGeneralNumberOfJobsCompleted and renamed jmGeneralCurrentNumberOfJobs to jmGeneralNumberOfJobsToComplete, so that a monitoring application can find out how many jobs have completed for the jmCompletedTable and how many are still to be comppleted. Their sum in the total number of jobs in the jmJobTable.
Clarified that jmQueueIndex shall be monitonically increasing which can change as new job arrive or the configuration changes.
Added the word Queue to make jmQueueJobIndex in the Queue table.
Clarifed that the jmQueueJobIndex and jmJobIndex shall not be 0 as required by SNMP for indexes. This gives agents that want to use the job-identifier that is generated by the system as the value for the jmJobIndex and jmQueueJobIndex a problem, if 0 is a legal value, such as in LPD.
Clarified the distinction betwen jmJobName and jmJobComment (now jobComment attribute): jmJobName is more of a name for identificaion purposes while jobComment is free form text that often isn't present and is intended to convey anything the submitting user wanted to convey usually to him/herself.
Clarified that -2 (unknown) shall be returned if the value of jmJobIndexNumber is unknown as in the Printer MIB convention.
Added "OrQueue" to make jmJobDeviceNameOrQueueRequested, since some didn't know which object to use for a system in which the user specifies a queue.
Added upper bound in jmJobIndex so that the MIB would compile.
Added "Index" to make jmAttributeTypeIndex object, since this object is both a type and an index.
Changed the name of the jmResourceIndex to jmAttributeInstanceIndex, since this index can be used for attributes that can have more than one instance per job, such as fileName, documentFormat, outputBin, etc.
Clarified that the jmAttributeInstanceIndex shall be the document number for those attributes that are one to one with a document, such as fileName(3) and documentName(4).
Replaced the jmResourceAmount with jmAttributeValueAsInteger and jmAttributeValueAsText
�INDEX
This index includes the textual conventions, the objects, and the attributes. Textual conventions all start with the prefix: "JM" and end with the suffix: "TC". Objects all starts with the prefix: "jm" followed by the group name. Attributes are identified with enums, and so start with any lower case letter and have not special prefix.
� INDEX \h "—A—" \c "2" ��—C—
colorantConsumedIndex, 52
colorantConsumedName, 52
colorantRequestedIndex, 52
colorantRequestedName, 52
—D—
deviceAlertCode, 41
documentCopiesRequested, 47
documentFormatEnum, 46, 47
documentFormatIndex, 46
documentName, 44
—F—
fileName, 44
—I—
impressionsCompleted, 50
impressionsCompletedCurrentCopy, 50
impressionsInterpreted, 50
impressionsRequested, 50
impressionsSentToDevice, 50
impressionsSpooled, 50
—J—
jmAttributeInstanceIndex, 89
jmAttributeTypeIndex, 89
JmAttributeTypeTC, 37
jmAttributeValueAsInteger, 90
jmAttributeValueAsOctets, 90
, 75
, 76
jmGeneralAttributePersistence, 69
jmGeneralJobPersistence, 69
jmGeneralJobSetName, 69
, 70
jmGeneralNewestActiveJobIndex, 71
jmGeneralNumberOfActiveJobs, 70
, 70
jmGeneralOldestActiveJobIndex, 71
jmJobIndex, 79
jmJobState, 84
jmJobDeviceNameOrQueueRequested, 43, 84
, 82
, 83
, 81
, 81
, 84
, 74
, 74
, 83
JmJobServiceTypesTC, 54
, 69, 79
jmJobStateAssociatedValue, 86
jmJobStateImpressionsCompleted, 86
jmJobStateKOctetsCompleted, 86
, 85
JmJobStateReasonsTC, 56
JmJobStateTC, 32
jmJobSubmissionIDIndex, 78
, 73
, 73
, 73
JmTimeIntervalTC, 32
JmTimeTC, 32
jobAccountName, 43
jobComment, 44
jobCompletedDateAndTime, 53
jobCompletedTime, 54
jobCopiesCompleted, 47
jobCopiesRequested, 47
jobKOctetsCompleted, 49
jobKOctetsRequested, 48
jobName, 41
jobOwner, 43
jobPriority, 45
jobProcessAfterDateAndTime, 45
jobServiceTypes, 42
jobSourceChannelIndex, 43
jobStartedBeingHeldTime, 53
jobStartedProcessingDateAndTime, 53
jobStartedProcessingTime, 53
jobState, 39
jobStateAssociatedValue, 39
jobStateReasons, 40
jobSubmissionDateAndTime, 53
jobSubmissionTime, 53
—M—
mediumConsumed, 51
mediumRequested, 51
—N—
numberOfInterveningJobs, 41
—O—
other, 39
outputBinIndex, 46
outputBinName, 46
—P—
pagesCompleted, 51
pagesCompletedCurrentCopy, 51
pagesRequested, 51
physicalDeviceIndex, 44
physicalDeviceName, 44
processingCPUTime, 54
processingMessage, 41
—S—
sheetsCompleted, 51
sheetsCompletedCurrentCopy, 51
sheetsRequested, 51
sides, 46
��

 Job Monitoring MIB, V0.871 April 4, 1997

�PAGE �107�

Bergman, Hastings, Isaacson, Lewis	[Page � PAGE �5�]

 Job Monitoring MIB, V0.871 April 4, 1997

Bergman, Hastings, Isaacson, Lewis	[Page �PAGE�1�]

 Job Monitoring MIB, V0.871 April 4, 1997

Bergman, Hastings, Isaacson, Lewis		[Page � PAGE �104�]

