
0LQXWHV�RI�WKH�-03�$FWLYLWLHV�RI

WKH�3:*�LQ�6DQ�'LHJR

0D\������

2YHUYLHZ

The meeting, held Friday, May 16, began with Ron Bergman (Chairman) reviewing the fact that
the PWG-JMP group is now, officially, an IETF chartered working group. To date, there have
been no comments on our IETF Job MIB draft from anyone other than PWG-JMP members.

Several key decisions were made at the May meeting, many details were resolved and a few
issues were left opened. The first main decision was to keep the Job State Table, which had been
the subject of a lot of debate. Tom Hastings contributed an excellent study of the use of SNMP
GET and GET NEXT operations to traverse both the Job State and Job Attributes tables. Tom’s
analysis showed that the Job State table, which is indexed by jmJobSet and jmJobSubmissionID,
provided the most efficient means of traversing a sparse table of Jobs. The Job State Table was
renamed to Job Table and the word “State” was removed from the appropriate objects,
simplifying the terminology. The second major decision was to eliminate the
jmJobStateAssociatedValue object entirely. This object had been proposed as a result of IBM’s
prototyping and represented a compact form of associating meaningful values with the Job State
Table relative to the current jmJobState. While the object did serve the purpose of keeping the
Job State Table compact (desired to facilitate greater persistence of entries in this table), it was
deemed too foreign by most members due to it’s ability to take on different meaning depending
on Job State. As jmJobStateAssociatedValue was removed, several mandatory objects were
added to the Job State Table.

Please note. I have attempted to report the activities of the JMP meeting as accurately as I was
able to record or recollect them. In the section titled “Job ID”, below, I have taken liberty to edit
in 2 alternatives and some additional comments which were not actually brought up at the
meeting. I am doing this because, in review, I believe this topic was rushed and poorly focused at
the meeting and is in need of clarification and broader consensus.

+DUU\ /HZLV �

PWG - JMP May 1997

-RE�7DEOH

The debate over whether or not the Job MIB should have a Job State Table, as proposed by IBM
following their Job MIB prototyping was settled in favor of keeping the Job State Table (but
renaming it to Job Table) thanks to a very thorough study, by Tom Hastings, of the use of SNMP
GET and GET NEXT operations on the perspective Job and Attribute tables. Since the right most
index of the Job Table is jmJobIndex (which represents the printer assigned job id and primary
index to the attribute table), the Job Table represents the most effective way to traverse a sparse
table of job entries.

The jmJobStateAssociatedValue object was eliminated, however, from the Job Table and, in it’s
place, the following mandatory objects were added:

y numberOfInterveningJobs
y jobKOctetsRequested
y impressionsRequested

The following mandatory objects remain in the Job Table

y jmJobKOctetsCompleted
y jmJobImpressionsCompleted

The following object is mandatory, and desired to be in the Job Table, but would drastically
increase the size of the Job Table

y jmJobOwner

The following objects, which were originally part of the Job State Table via association with the
jmJobStateAssociatedValue object are now “relinquished” to the Attribute Table for the sake of
trying to minimize the number of objects added to the Job Table

y deviceAlert
y outputBinIndex

The resulting Job Table looks like

 jmJobSetIndex
 jmJobIndex
 jmJobState
 jmJobKOctetsCompleted
 jmJobImpressionsCompleted
 jmNumberOfInterveningJobs
 jmKOctetsRequested

+DUU\ /HZLV �

PWG - JMP May 1997

 jmImpressionsRequested

There was enough unresolved debate over the use of OctetsRequested and Completed that I feel
this issue may need to be revisited. Also, the fact that jmJobOwner did not make it into the Job
Table will upset some and may require additional modifications.

6KRSSLQJ�&DUWV�	�*DV�*DXJHV

The objects jobKOctetsRequested and jobKOctetsCompleted were the focus of much debate. The
Requested value has two primary uses.

1. A guide in determining the sizes of jobs that are currently pending in the printer or server.
2. A reference point for the top end of a job progress gauge.

Given these uses, we first agreed that jobKOctetsRequested and Completed should be mandatory
job attributes. Next, because we want them available in a “get next job” framework, we agreed
that they should both be part of the Job Table. We also agreed that KOctetsCompleted are
counted as data is passed to the language interpreter. Typical embedded PDL interpreters do not
provide “hooks” for octets actually processed.

Item (1) above is referred to as the Shopping Cart or Check out Line scenario. This is because
knowing the number of jobs ahead of you and the relative size of each job in octets is analogous
to knowing the length of a grocery checkout line and the amount of goods in each cart. In both
cases, the given information is sufficient for making an educated guess but will never guarantee
some other line won’t move faster. So, the debate regarding jobKOctetsRequested is whether or
not the Job MIB agent should multiply this value by the number of copies requested. The
alternative is for the monitoring application to get both attributes and adjust the information
displayed accordingly. There was not strong consensus on this issue but the discussion ended
with the attributed representing their face value definitions.

-RE�,'

The Job MIB consists of 4 groups. These are General, ID, State and Attribute (State has just been
renamed to Job but this is not as descriptive). The Job ID Table provides a means to find the
jmJobIndex (think of this as a printer assigned job id which is used to index the State and
Attribute tables) if you understand and know your Job Submission ID. Several Job Submission
ID formats have been registered and HP has even created a PJL command to carry this ID during
submission. Some printer drivers or print job port monitor applications will generate these new
jobSubmissionIDs and use the new PJL command, but some legacy platforms (UNIX, for
example) will continue to rely on the job id information found in LPR/LPD, today. Since the
jmJobSubmissionID is limited to 32 octets, and we want to keep it small for the sake of Job ID
Table persistence, applications dealing mainly with LPR print submission may not use the Job ID
table. There are several alternatives to this situation.

+DUU\ /HZLV �

PWG - JMP May 1997

1. An LPR/LPD based jmJobSubmissionID format could be registered. This topic was
touched on only briefly, by Jay Martin, but should have received more focus. To fit the
current jmJobSubmissionID format size and scheme, someone would still need to
associate the header bytes which identify the format as “LPR” and the resulting string
would be severely constrained, on the order of the example which follows:

y Job Owner (6 bytes)
y Host Name (8 bytes)
y Server Job ID (16 bytes)

2. A second form of Job ID Table could be introduced specifically for the LPR case. This
was also not discussed at the meeting but I am including it here for sake of context. We
could treat LPR as a special case, give it it’s own Job ID Table for compatibility with
legacy print subsystems and live with the “old” and “new” forms of Job Submission ID.
The LPR Job ID Table would be indexed by the 3 objects noted in (1) above to result in
finding the jmJobIndex for use in other tables.

3. The alternative that was discussed at the meeting was more of a grope (which is why I
took liberty to address alternatives 1 and 2, here) to add one LPR attribute, jmJobOwner,
to the Job Table. With this alternative, applications working mainly in an LPR
submission domain would abandon use of the Job ID Table and attempt to identify jobs
by correlating Owner with jmJobIndex which is returned implicitly on each GET NEXT
across the Job Table. This approach not only “ruins” the Job Table by doubling it’s size
with the jmJobOwner (syntax OCTETs) object, but results in poor utility of the Job MIB
for these applications. It seems unlikely that Owner is sufficient to properly identify the
job for reliable accounting or monitoring. Extrapolating, it stands to reason that
eventually the requirement would grow to encompass adding Host Name and Server Job
ID to the Job Table as well. Adding several more strings would totally revise the intended
persistence characteristics of the Job Table.

As the topic of job identification in the LPR domain is discussed, I think several things must be
kept in mind. First, the Job ID Table and Job (State) Table relationship was designed to take
advantage of a new form of concise Job Submission ID. Some support for the Job MIB must
ultimately be provided in the submission process and jmJobSubmissonID is key to effective print
job monitoring. On the other hand, for accounting purposes or providing a “queue view” as in the
“shopping cart” scenario, jmJobSubmissionID does not have to enter the picture. Jobs may be
correlated with owners, for job credit purposes, using static attributes from the Attribute table.
The only operation which really requires direct, immediate correlation of Owner with State is
that of notification of job progress or completion. The point, here, is that if an application is
performing job state notification to a user, it is likely to also be involved in the job submission
process and, therefore, should be able to associate a Job Submission ID. If the application is
providing a generic queue view or accounting, the jmJobIndex may be determined by traversing
the Job Table and, knowing the index of all Pending, Printing or Completed jobs, the application
can gather whatever additional information it needs from the Attribute Table.

If the design point is to facilitate a job state notification broker that lives outside of the
submission framework and correlates users (notification recipients) with print jobs strictly based
on identification provided via LPR, we need to have this stated.

+DUU\ /HZLV �

PWG - JMP May 1997

Nested JobID.

An issue had been raised by HP, pointing out that, in a QueueServer implementation for
example, the NIC card would gets job, wrap the job and create a banner page. This could result in
nested Job Submission Ids. Bob Pentecost had proposed 3 alternatives

1. Job MIB agent track innermost JobSubmissionID
2. Job MIB agent track all job IDs and point to same job index
3. Job MIB agent track nested jobs as separate jobs.

Number 2 is the preferred method (Is this mandatory?)
What about other nested attributes?

-03���,33�&RPSDULVRQ

Scott Issacson lead a comparison of JMP and IPP job attributes based off a paper written by Tom
Hastings (Tom’s paper number 2). Tom has the official disposition of each item on his write-up.
Here are some of the highlights which I captured:

1. job-name, medium, job-owner etc. are 255 byts in IPP. They are only 63 bytes in job-mib. OK.

2. n-up - no specific attribute required because the ratio of Pages to Sheets provides all the necessary
information for accounting and billing.

3. Sides. Don't need to know binding (long edge, short edge).

4. Printer resolution - Yes we need this attribute

5. Print Quality - Yes we need this attribute

6. Job Originating Host - Yes, this attribute should be added to the Job MIB

7. States comparison - Harry to do proposal.

8. Document formats. Printer MIB vs. MIME. Unresolved

0,6&

1. There was a review of the list of Job Attributes and whether or not we think they apply
more to job monitoring or accounting. See Tom’s revised list which should be available
soon. Some attributes are really useful for identification which applies to both monitoring
and accounting. It might be helpful if we also make this distinction.

2. HP has officially submitted a PJL command for the jmJobSubmissionID. Bob Pentecost
will document the command and Tom will add it to an addendum on the Internet Draft of
the Job MIB. I think the command looks like @PJL JOB SUBMISSIONID = “id string”,
but wait until you see Bob’s documentation to make this “official”. Thanks, to HP, for
helping standardize the submission of the job ID.

3. It was agreed that we should not duplicate attributes among various tables in the Job
MIB. For instance, since the Job Table has a mandatory object called
jmJobKOctetsRequested, the Job Attribute Table shall not have an attribute called

+DUU\ /HZLV �

PWG - JMP May 1997

jobKOctetsRequested. I don’t know what the reasoning was behind this decision other
than people felt it was “SNMP foreign” to have two OIDs where the same basic value
may be determined. If the IBM Job MIB prototype experience were heeded, however, we
would realize a distinction between the dynamic value (in the Job State Table) and the
static value (in the Job Attribute Table) for the attribute. These prototypers have tried to
distinguish, many times, that the Job State Table is best suited for representing the
dynamics of the job in process while the Job Attribute Table is most useful for learning
either static information or the value of dynamic attributes which have reached their final
state. However, this argument has not been accepted.

4. Since outputBinIndex is no longer part of the (defunct) jmJobStateAssociatedValue, and
not part of the Job Table, it becomes an attribute in the Job Attribute Table which means
it can easily be multi-valued. Therefore, there is no more need for the previous definition
of -2 = multi which was a shorthand way of trying to represent multiple output bins using
a single integer.

5. deviceAlertCode also moved from the Job Table to the Attribute Table and can now be
multi-valued if necessary There is an unresolved question about what to do when the
device uses the generic alert codes. Perhaps, device alert code is too specific for the job
MIB in the first place?

6. The enumerated list of job attributes keeps growing and changing. There will always a
possibility for the list to grow and we can either tack new attributes to the end of the list
or modify the list, now, into some meaningful grouping, leaving space for future
expansion. Either approach would be sufficient, architecturally. I believe Tom is favoring
the grouped approach. The main goal is to structure the list, one way or the other, such
that currently enumerated attributes will not change.

7. It is difficult for an embedded controller to distinguish between Printing and Processing
states. Even though Printing would be the intuitive choice, here, the JMP agreed to
combine the two states and call them Processing. This choice aligns with IPP which,
presumably, has the future potential to encompass more than printing devices (hummm..
Internet Printing Protocol?).

8. The statement was made that any supported attribute, whether it resides in the Job Table
of the Attribute Table, must be “instantiated” for a particular job as soon as that job has a
state of PENDING. We need to clarify if this pertains to all supported attributes or just
mandatory ones. I think mandatory should suffice since these are all a management
application can rely on for reliable varbinds, anyway.

9. It was also stated that no object can be deleted prior to it’s tables persistence time-out. For
example, even though the jmJobNumberOfInterveningJobs value will reach 0 for every
job as it moves from PENDING to PRINTING in the Job Table, the object, itself, must
remain instantiated with the final value.

10. There is no need to clarify objects or attributes according to Server based vs. Printer
based Job MIB implementations. (Issue 71).

11. jmJobNewestActiveIndex should return to zero when there are no active jobs. There was
a proposal to change NewestActive to simple Newest in an attempt to keep the agent from
having to “back up” if jobs get completed out of order, but this proposal was rejected.
(Issue 72).

+DUU\ /HZLV �

PWG - JMP May 1997

12. It was reemphasized that jmJobIndex needs to be monotonically increasing. It is up to the
agent to guarantee this.

13. In some cases, to accommodate both Printer and Server based implementations of the Job
MIB, where printers would be expected to be able to correlate to the Printer MIB but
Servers would not, “sister” attributes have been created. An example would be
outputBinIndex and outputBinName. We decided, at this meeting, to “collapse” these
“sister” attribute pairs into one, acknowledging that the Job Attribute table already
provides for ValueAsInteger and ValueAsOctet.

14. Systems that do not understand multiple documents per job should not implement
jmJobDocumentCopies (Requested or Completed). These attributes only pertain to
multi-document systems.

+DUU\ /HZLV �

PWG - JMP May 1997

