Supplementary
“Control function”
for Rellable Disconnect
across the Bus reset

Takashi Isoda
Canon Inc.

Canon -1- April 13rd

To resume from Bus reset
(or other similar_situations)...

Initiator assigns a “signature” to each ORB to be
uniquely identified within the queue. (“signature” is a new

definition that replaces “sequence_number”.)

Target needs to maintain the “history log” of ORB
execution to avoid duplicated execution of the
same operation request (identified by “signature”).

The “history log” of ORB execution is...

created before Target stores the Status Block for
the ORB.

discarded after target knows that the ORB will
never be re-queued by the initiator.

Canon -2- April 13rd

How does target know the ORB will
never be re-queued by the Initiator?

By receiving the response subaction for
Status Block write request.

Or by finding new “signature” in case that the
response subaction for Status Block write
request Is missed.

(Or logged out)

Canon -3- April 13rd

The “history log” and its lifetime..

Initiator
ORB(1)
: Status Block for ORB(1)
- e ACK» =

CONNECTED

canon

L /

[~

ORB(2)>\@
RB

BUS RESET,
'ACK-
C N\ /)

re-connect procedure

ORB(3)

Target

j g

s

_4-

Status Block for ORB(2) 42«1—

CONNECTED

Create—>

Discard-=-

ExecORB(1)
_Log

Create—>

Discard=

April 13rd

ExecORB(2)
_Log

“Disconnect” needs to be improved

to tolerate bus reset.

Disconnection of a queue implies the existence of
last (final) ORB for the queue.(i.e., There will be an
ORB that no succeeding ORB for the queue exists.)

Problem

In case that the response subaction for the “last”
status block write request is missed, target can not
know that the ORB will never be re-queued by the
Initiator because the target receives neither
response subaction nor new signature .

- ->Target still maintains the “history log” though
Initiator will never re-queue the ORB

Canon -5- April 13rd

The problem

Initiator Target
ORB(1)
a qORB(l) ORB(1)
= d X _Log
D status Block for ORB 0 Create=——p
2 z
e
© O

- e ACK» a» Discard

i'wl Create=——

re-connect procedure

No more ORB
will be issued

Canon -6 April 13rd

To solve the problem..

Initiator informs target that Initiator will never
re-queue the Final ORB by an “explicit” way
(should tolerate the Bus reset) .

* |nitiator can informs target of it through the
“Control queue” that has been already defined.

* Note: The information can not be passed through “the
disconnecting queue”

Proposal
Define “Disconnect confirmation”

as one of control functions to solve the
problem

Canon -7- April 13rd

“Disconnect Confirmation” ...

One of the “Control information”s with one or two
parameters specifying confirming queue Id(s)

Initiator iIssues this “Control information” after
confirming final ORB is completed

* Note: target does not issue this control information

Recelving this “Control information”, Target may re-
use the queue ld(s) specified by the parameter(s).

Target ignores this “Control information” when the
specified queue(s) Is not in disconnecting state.

Canon -8- April 13rd

How the disconnect confirmation works.

Initiator Target

ORB(1) quB(l) S—
wi
Discard-

Status Block for ORB
Create—>

)

ED

CONNECTED

@ONNEC

--'ACK'--

-
-

re-connect proceduse

Disconnect

Discard-

April 13rd

©

Canon

How the disconnect confirmation
works(2)..

Initiator Target

ORB(1
. ’

Status Block for ORB

Create—p—3=8
Discard;'

Last
Create—p 93800
Discard:

DISCONNECT

CONNECTED
C®NNECHED

= «cACK>» e e«

p >
b ;
|Im|
)

canon 4

April 13rd

Conclusion...

Some complementary mechanism will be
required to complete the disconnection of a
gueue reliably across the Bus reset

“Disconnect confirmation” will solve the
problem.

Canon -11- April 13rd

