1394 PWG/IDT_r02
May 19, 1999

CONGRUENT SOFTWARE, INC.
98 Colorado Avenue

Berkeley, CA 94707
(510) 527-3926
(510) 527-3856 FAX

FROM: Peter Johansson

TO: 1394 Printer Working Group

DATE: May 19, 1999

RE: Merged documents for proposed draft

The updated draft that follows is an attempt to merge many of the contributions made to the
1394 PWG to date and to place them in a form close to an eventual standards document. It
also reflects some useful brainstorming that has occurred outside of scheduled meetings.

There is more work | wish to reflect in the draft, but time overtakes me before Philadelphia
and | am releasing what is done. | am likely to have prepared another revision to distribute
at the meeting; if | do, the change bars will reflect the delta from IDT _rO1 instead of the
delta from this document.

IDT_r02
May 19, 1999

Contents
1 SCOPE ANU PUIMPOSEeeteeeeieeee ittt e e e e e e ettt e e e e e e s e bbb e eeaaaaeaanbbbbeeeaaeeeeannbeneeeaens 1
S Yo o 1 1
L.2 PUIMPOSE ...ttt 1
2 NOIMALIVE TEFEIENCES ..ooiiiiiie et 3
2.1 APProved refErENCESeiiiii e 3
2.2 References under developmeNt..........oeeeiiiiciiieiiee e 3
3 Definitions and NOALIONooiiiiiiiiiiiii e 5
I T 1011 (T L PP PR 5
3.1.1 CONFOMMEANCE ...ciii it e e e e e e e s 5
G I] [0 7Y Y/ SR 5
3.1.3 ABDIEVIALIONS ...cceiiiiiiiee e 7
10228 [] 7= 1o] o H PP 8
3.2. 1 NUMEFIC VAIUES ...ttt e e e e e e s 8
3.2.2 Bit, byte and quadlet ordering.........ccccveeevevciiiieeie e 8
4 Model (INFOrMALIVE)eoiiieee e e e e 11
4.1 Protocol stack and service Mmodeloccceeiviiiiiiiine e 11
4.2 Independent data paths for each Service..........ccccceeiiiiiiiiie e, 12
i @] ol a[=Te 1 o] g g = U F=To T=T 0 0 =T o R 13
4.4 Data transfer between initiator and target...........ccccccoieiiii e 14
4.5 Control requests and rESPONSESuuvrerieeeeiiiiirieeree e e e esirrrrree e s e s snrraeeeeees 14
4.6 UNSONCItEA SLALUS ...oeeiieiiiiiieiee ettt e e e e e 14
5 DAtA SITUCIUIES ...ttt e e e e e e e e e e ee s 15
5.1 Transport fOW ORBSooiiiiiee e 15
5.2 StAtUS DIOCK......eiiiiiiiiiii e 16
5.3 Control iNfOrMatioNoooiiiiiiie e 18
6 Control and StatuS FEQISIEISccueiiiiiiee e e e 23
7 Configuration ROMueiiiiiiie et e e e e e 25
4% T oo A L1 =Tox (] Y/ U SSRRR 26
7.2 INSEANCE IFECIONIESeeiieieee ettt e e e e e 27
7.3 FEALUIe dir€CIOMES ...eviiiiiiiie et 28
7.4 KEYWOI [EAVES ...ttt ettt e e e e e e e e e 28
7.5 UNIt AIFECLOMES ..eoiiiiiie ittt e e 29
e @fo] 110 o] o 1] = Uilo] 0 - F PR 33
8.1 LOQIN @Nd QUEUE ZEIO......ueeiieeeiiiiiiiieeeeeesesitieer e e e e e e sssantbaaeeaaessssnnsnneeeeaeeeanans 33
8.2 Autonomous response iNfOrmMationcuueeiiiieriiiiiieieee e 34
8.3 SEIVICE TISCOVEIY ...iiiiiiiiie e e ettt e e e e e e e e e e e e e e e e e s s e nnarneeaaeeeeaans 35
8.4 CoNNECtioN MANAGEMENTcciii ittt e e e e e e e e e aane 35
8.4.1 Connection establishmentcccccoiiiiiiiiii e 35
8.4.2 Shutting dOWN @ QUEUEcceiiiiiiiie et 36
8.4.3 AbOrting @ CONNECHIONcccceiiiiiiiie e e 36
8.4.4 Resetting @ CONNECLIONooiiiiiiiiiiie e 36
8.5 Queue Status iNfOrMAtIONuuvuiriiiiiiiiiiiieir . 36
9 Transport fIOW OPEIatiONSoiiiueiiiiiiee et 37
9.1 Data transfer t0 @ targel.......ccoii i 38
9.2 Data transfer to an iNtator.............eeeeiiiaiiee e 38

Page

IDT_r02
May 19, 1999

9.3 COMPIELION STALUSeeeiiieieee e e e e e e e e e 39
9.4 Execution context for active ORBS........cooiiuiiiiiiiieeieiee e 39
O.5 EITOF FECOVEIY .. uuuteuueeeeueeeueueeeeeeeuesennesessenenssesesssnnessesssnsssnssssnnssssnnsnnnsnnnsnsnnnnns 40
9.6 BUS IESEE...uttiiiiiieitiitiitittttettttbtb bbbttt bbbttt bbb bbb bbb bbb bbnbnbnbnnnne 40
Tables
Table 1 — Parameter ID VAlUESoooiuuiiiiiiieeeieie et 20
Table 2 — ROOt dIr€CIONY ENIIIES ...eeeeiiiciiieeiee e e e e e e e 27
Table 3 — Feature direCtory ENtrieSeeiiiiiiiiiieii e 28
Table 4 — Recommended KEYWOIS...........uuiieeiiiiiiiiiieee et e e e e e e e e e e 28
Table 5 — Unit direCtOry NtreSooiiiiiiiiieieee e 30
Table 6 — Connection type encoded by queue ID parameters...........ccccvveveeeeenne 35
Figures
Figure 1 — Bit ordering within @ byte..........cocoiiiiiii e 8
Figure 2 — Byte ordering within @ quadlet..............ccooiiiiiiiiiiiiiee e 8
Figure 3 — Quadlet ordering within an octlet ..., 9
Figure 4 — Protocol stack (service at target)cccoooeueveieiiieeiiiiiieeeeee e 11
Figure 5 — Protocol stack (service at initiator)...........cccvvvvveeei i, 11
Figure 6 — Multiplexed queues in an SBP-2 task Set.........ccccoiiiiiiiiiiiiiniiiiiieee. 12
Figure 7 — Independent queues (logical model)cccevveeeiiiiiiiiiee e, 13
Figure 8 — Transport floW ORBccoiiiiiiiiiiee e 15
Figure 9 — Status block format..........ccceeeiiiiciiiiiii e 17
Figure 10 — Control information format............cccccooiiiiiiiii e, 18
Figure 11 — Immediate parameter formatcccccoevvvvieeeee e 20
Figure 12 — Variable-length parameter format.............ccccoviiiiii e, 21
Figure 13 — Example configuration ROM hierarchy.........cccccccocviiiivieiiiicciiiennnn. 25
Figure 14 — First five quadlets of configuration ROMcooiiiiiiiiiniiiiiieeenn. 26
Figure 15 — Transport flow (datagram model)ccccoveveieeiiiiiiiiiee e, 37
Figure 16 — Transport flow (stream model)...........ooooiiiiiiiiiiiiii e, 37
Figure 17 — Excess initiator data (datagram model)........ccccccoevvviiieeeeciicciiieeenn, 38
Figure 18 — Excess target data (datagram model)cccccoriiiiiiiiiiiininiiiiieeen. 39
Figure D—1 — Example bus information block and root directory..............ccvuee..... 49
Annexes
Annex A (normative) Minimum Serial Bus node capabilitiesccccvvvveennn. 43
Annex B (normative) Compliance with ANSI NCITS 325-1998ccoovcvviieeennn. 45
Annex C (normative) Control request and response parameters............cccuee..... a7
Annex D (informative) Configuration ROMoocciiiiiiiiiiiiiiiee e 49

IDT_r02
May 19, 1999

1 Scope and purpose
1.1 Scope

1.2 Purpose

IDT_r02
May 19, 1999

2 Normative references
The standards named in this section contain provisions which, through reference in this text, constitute
provisions of this standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision; parties to agreements based on this standard are encouraged to investigate the
possibility of applying the most recent editions of the standards indicated below.
Copies of the following documents can be obtained from ANSI:
Approved ANSI standards;
Approved and draft regional and international standards (ISO, IEC, CEN/CENELEC and ITUT); and
Approved and draft foreign standards (including BIS, JIS and DIN).

For further information, contact the ANSI Customer Service Department by telephone at (212) 642-4900,
by FAX at (212) 302-1286 or via the world wide web at http://www.ansi.org.

Additional contact information for document availability is provided below as needed.
2.1 Approved references

The following approved ANSI, international and regional standards (ISO, IEC, CEN/CENELEC and ITUT)
may be obtained from the international and regional organizations that control them.

ANSI NCITS.325-1998, American National Standard for Information Systems—Serial Bus Protocol 2
(SBP-2)

IEEE Std 1394-1995, Standard for a High Performance Serial Bus
ISO/IEC 9899:1990, Programming Languages—C
2.2 References under development
At the time of publication, the following referenced standards were still under development.

IEEE P1212r, Draft Standard for a Control and Status Register (CSR) Architecture for Microcomputer
Buses (Revision)

IEEE P1394a, Draft Standard for a High Performance Serial Bus (Supplement)

IDT_r02
May 19, 1999

3 Definitions and notation

3.1 Definitions

3.1.1 Conformance

Several keywords are used to differentiate levels of requirements and optionality, as follows:

3.1.1.1 expected: A keyword used to describe the behavior of the hardware or software in the design
models assumed by this standard. Other hardware and software design models may also be

implemented.

3.1.1.2 ignored: A keyword that describes bits, bytes, quadlets, octlets or fields whose values are not
checked by the recipient.

3.1.1.3 may: A keyword that indicates flexibility of choice with no implied preference.

3.1.1.4 reserved: A keyword used to describe objects—bits, bytes, quadlets, octlets and fields—or the
code values assigned to these objects in cases where either the object or the code value is set aside for
future standardization. Usage and interpretation may be specified by future extensions to this or other
standards. A reserved object shall be zeroed or, upon development of a future standard, set to a value
specified by such a standard. The recipient of a reserved object shall not check its value. The recipient of
an object defined by this standard as other than reserved shall check its value and reject reserved code
values.

3.1.1.5 shall: A keyword that indicates a mandatory requirement. Designers are required to implement all
such mandatory requirements to assure interoperability with other products conforming to this standard.

3.1.1.6 should: A keyword that denotes flexibility of choice with a strongly preferred alternative. Equivalent
to the phrase “is recommended.”

3.1.2 Glossary

The following terms are used in this standard:

3.1.2.1 byte: Eight bits of data.

3.1.2.2 connection: A queue or a pair of queue(s) that affords access to a service. A connection may be

unidirectional or bi-directional; in the latter case, a connection may be blocking or nonblocking. Two
queues are necessary to implement a bi-directional, nonblocking connection.

3.1.2.3 function: A capability of the device expressed as a unit architecture (unit directory) with a single
logical unit (LU zero).

3.1.2.4 initiator: A node that originates device-service-or SBP-2 management requests, control operation
and transport flow ORBs and signals them to a target for processing.

3.1.2.5 logical unit: The part of the unit architecture that provides access to one or more services.
Devices compliant with this standard implement one logical unit with a LUN of zero.

3.1.2.6 login: The process by which an initiator obtains access to a target fetch agent. The target fetch
agent and its CSRs provide a mechanism for an initiator to signal ORBs to the target.

IDT_r02
May 19, 1999

3.1.2.7 management service: A mandatory service provided for each function; it executes control
requests to establish or terminate connections to the other services of the function. The connection to this
service is implicitly established as the result of an SBP-2 login.

3.1.2.8 node: An addressable device attached to Serial Bus.
3.1.2.9 octlet: Eight bytes, or 64 bits, of data.

3.1.2.10 operation request block: A data structure fetched from system memory by a target in order to
execute the request encapsulated within it.

3.1.2.11 quadlet: Four bytes, or 32 bits, of data.

3.1.2.12 queue: An ordered set of ORBs within a task set that does not block with respect to other queues
that are part of the same task set.

3.1.2.13 receive: When any form of this verb is used in the context of Serial Bus primary packets, it
indicates that the packet is made available to the transaction or application layers, i.e., layers above the
link layer. Neither a packet repeated by the PHY nor a packet examined by the link is "received" by the
node unless the preceding is also true.

3.1.2.14 register: A term used to describe quadlet-aligned addresses that may be read or written by Serial
Bus transactions. In the context of this standard, the use of the term register does not imply a specific
hardware implementation. For example, in the case of split transactions that permit sufficient time
between the request and response subactions, the behavior of the register may be emulated by a
processor.

3.1.2.15 request subaction: A packet transmitted by a node (the requester) that communicates a
transaction code and optional data to another node (the responder) or nodes.

3.1.2.16 response subaction: A packet transmitted by a node (the responder) that communicates a
response code and optional data to another node (the requester). A response subaction may consist of
either an acknowledge packet or a response packet.

3.1.2.17 service: A protocol used to control an independently operable component of a function.

3.1.2.18 split transaction: A transaction that consists of a request subaction followed by a separate
response subaction. Subactions are considered separate if ownership of the bus is relinquished between
the two.

3.1.2.19 status block: A data structure which may be written to system memory by a target when an
operation request block has been completed.

3.1.2.20 store: When any form of this verb is used in the context of data transferred by the target to the
system memory of either an initiator or other device, it indicates both the use of Serial Bus write request
subaction(s), quadlet or block, to place the data in system memory and the corresponding response
subaction(s) that complete the write(s).

3.1.2.21 system memory: The portions of any node’s memory that are directly addressable by a Serial
Bus address and which accepts, at a minimum, quadlet read and write access. Computers are the most
common example of nodes that might make system memory addressable from Serial Bus, but any node,
including those usually thought of as peripheral devices, may have system memory.

3.1.2.22 target: A node that receivesfetches device-service—or SBP-2 management requests, control
operation and transport flow ORBs from an initiator. In the case of control operation or transport flow

IDT_r02
May 19, 1999

requests, the ORBs are directed to the target’s logical unit zero to be executed. Managementreguests-are
serviced-by-the-target: A CSR Architecture unit is synonymous with a target.

3.1.2.23 task: A task is an organizing concept that represents the work to be done by a target to carry out
a command encapsulated by an ORB. In order to perform a task, a target maintains context information
for the task, which includes (but is not limited to) the command, parameters such as data transfer
addresses and lengths, completion status and ordering relationships to other tasks. A task has a lifetime,
which commences when the task is entered into the target's task set, proceeds through a period of
execution by the target and finishes either when completion status is stored at the initiator or when
completion may be deduced from other information. While a task is active, it makes use of both target
resources and initiator resources.

3.1.2.24 task set: A group of tasks available for execution by a logical unit of a target. ANSI
NCTIS.325-1998 specifies some dependencies between individual tasks within the task set and this
standard mandates others.

3.1.2.25 transaction: A Serial Bus request subaction and the corresponding response subaction. The
request subaction transmits a transaction code (such as quadlet read, block write or lock); some request
subactions include data as well as transaction codes. The response subaction is null for transactions with
broadcast destination addresses or broadcast transaction codes; otherwise it returns completion status
and possibly data.

3.1.2.26 unit: A component of a Serial Bus node that provides processing, memory, 1/0O or some other
functionality. Once the node is initialized, the unit provides a CSR interface that is typically accessed by
device driver software at an initiator. A node may have multiple units, which normally operate
independently of each other. Within this standard, a unit is equivalent to a target.

3.1.2.27 unit architecture: The specification of the interface to and the services provided by a unit
implemented within a Serial Bus node. This standard is a unit architecture for image devices (e.g.,
printers, scanners or multifunction peripherals) intended to be used with the unit architecture for SBP-2
targets.

3.1.2.28 unit attention: A state that a logical unit maintains while it has unsolicited status information to
report to one or more logged-in initiators. A unit attention condition shall be created as described
elsewhere in this standard or in the applicable command set- and device-dependent documents. A unit
attention condition shall persist for a logged-in initiator until a) unsolicited status that reports the unit
attention condition is successfully stored at the initiator or b) the initiator's login becomes invalid or is
released. Logical units may queue unit attention conditions; after the first unit attention condition is
cleared, another unit attention condition may exist.

3.1.2.29 unsolicited status block: A status block whose src field is two; the value of the ORB offset hi
and ORB offset lo fields do not identify any particular ORB.

3.1.2.30 working set: The part of a task set that has been fetched from the initiator by the target and is
available to the target in its local storage.

3.1.3 Abbreviations
The following are abbreviations that are used in this standard:

CSR Control and status register
CRC Cyclical redundancy checksum
EUI-64 Extended Unique Identifier, 64-bits

LUN Logical unit number

IDT_r02
May 19, 1999

ORB Operation request block
SBP-2 ANSI NCITS.325-1998

3.2 Notation
The following conventions should be understood by the reader in order to comprehend this standard.
3.2.1 Numeric values

Decimal and hexadecimal numbers are used within this standard. By editorial convention, decimal
numbers are most frequently used to represent quantities or counts. Addresses are uniformly represented
by hexadecimal numbers, which are also used when the value represented has an underlying structure
that is more apparent in a hexadecimal format than in a decimal format.

Decimal numbers are represented by Arabic numerals without subscripts or by their English names.
Hexadecimal numbers are represented by digits from the character set 0 — 9 and A — F followed by the
subscript 16. When the subscript is unnecessary to disambiguate the base of the number it may be
omitted. For the sake of legibility, hexadecimal numbers are separated into groups of four digits separated
by spaces.

As an example, 42 and 2A;5 both represent the same numeric value.
3.2.2 Bit, byte and quadlet ordering

Devices compliant with this standard use the facilities of Serial Bus, IEEE Std 1394-1995; therefore this
standard uses the ordering conventions of Serial Bus in the representation of data structures. In order to
promote interoperability with memory buses that may have different ordering conventions, this standard
defines the order and significance of bits within bytes, bytes within quadlets and quadlets within octlets in
terms of their relative position and not their physically addressed position.

Within a byte, the most significant bit, msb, is that which is transmitted first and the least significant bit,
Isb, is that which is transmitted last on Serial Bus, as illustrated below. The significance of the interior bits
uniformly decreases in progression from msb to Isb.

ast significant

msh interior bits (decreasing ‘significance left to right) Isb
| | | |

most significant

Figure 1 — Bit ordering within a byte

Within a quadlet, the most significant byte is that which is transmitted first and the least significant byte is
that which is transmitted last on Serial Bus, as shown below.

most sianificant 5 I
P secon next to L
most significant byte m‘ost‘ signi‘ficgnt‘ by}e Iegst‘ signi‘ficgnt‘ by}e least S|gn|‘f|c?nt‘ by‘te

Figure 2 — Byte ordering within a quadlet

Within an octlet, which is frequently used to contain 64-bit Serial Bus addresses, the most significant
guadlet is that which is transmitted first and the least significant quadlet is that which is transmitted last on
Serial Bus, as the figure below indicates.

IDT_r02
May 19, 1999

most significant

most significant quadlet

least significant quadlet
| | | | | | | | | | | |

[
least significant

Figure 3 — Quadlet ordering within an octlet

When block transfers take place that are not quadlet aligned or not an integral number of quadlets. No
assumptions can be made about the ordering (significance within a quadlet) of bytes at the unaligned

beginning or fractional quadlet end of such a block transfer, unless an application has knowledge (outside
of the scope of this standard) of the ordering conventions of the other bus.

IDT_r02
May 19, 1999

4 Model (informative)

This section is informative and describes imaging devices that conform to this document and its normative
references. It is intended to enhance the usefulness of the other, normative parts of the document. In
addition to the information in this clause, users of this document should also be familiar with the CSR
architecture, Serial Bus standards and the SBP-2 standard.

Examples of imaging devices that come within the scope of this profile include (but are not limited to)
copiers, printers, facsimile machines, scanners and multi-function peripherals that combine two or more of
these capabilities. These devices are characterized by high-volume transfers of application data; modest
amounts of control information may be communicated in parallel with the application data transfers. These
devices are used with diverse operating systems and application protocols; consequently any standard for
their use with Serial Bus needs to hide many of the transport protocol details from the user applications.
For example, a print driver that supports Postscript data formats should not be concerned with how data
and control information are transported between it and the printer. This document resolves those
concerns.

4.1 Protocol stack and service model

The relationship between the initiator and target may be modeled as a software stack present in both
devices, as shown by Figure 4 and Figure 5 below. The physical interconnection, via Serial Bus, exists at
the lowest protocol level. Logical connections (shown by dashed lines) exist at the other protocol levels: an
SBP-2 LOGIN between the initiator and target multiplexes queues (defined by this document) that in turn
support end-to-end connections (also defined by this document) between client applications and services.
This document defines the data structures and methods necessary to implement the shaded levels in the
protocol stacks. Note that client application(s) may reside at either the initiator or the target (they are
commonly found at the initiator) and the service(s) at the corresponding SBP-2 functional role, target or
initiator.

Client(s) Connections Service(s)
Image device profile Queues Image device profile
SBP-2 initiator LOGIN SBP-2 target

IEEE Std 1394-1995 - |EEE Std 1394-1995

A

Figure 4 — Protocol stack (service at target)

Service(s) Connections Client(s)
Image device profile Queues Image device profile
SBP-2 initiator LOGIN SBP-2 target
IEEE Std 1394-1995 |« »| |EEE Std 1394-1995

Figure 5 — Protocol stack (service at initiator)

In order for the application(s) and service(s) to communicate in a peer-to-peer, transport-independent
manner, this document defines how SBP-2 may be used to implement uni- and bi-directional transport |

11

IDT_r02
May 19, 1999

flows for both control information and application data. Key concepts introduced below are used to explain
| the details of the bi-directional transport flow model:

function: A capability of the device expressed as a unit architecture (unit directory) that contains a
single logical unit (LU zero);

| service: A protocol used to control an independently operable component of a function;

management service: A mandatory service provided for each function; it executes control requests
to establish or terminate connections to the other services of the function. The connection to this
function is implicitly established as the result of an SBP-2 login;

gueue: An ordered set of ORBs within a task set that does not block with respect to other queues
that are part of the same task set; and

connection: A queue or a pair of queues that affords access to a service. A connection may be
unidirectional or bi-directional; in the latter case, a connection may be blocking or nonblocking. Two
gueues are necessary to implement a bi-directional, nonblocking connection.

4.2 Independent data paths for each service

SBP-2 describes all the work to be performed by a particular logical unit as a task set, a collection of
ORB:s linked together as shown by Figure 6.

\
Y
\
\
\

ORB_POINTER —

Queue z Queue y Queue z Queue y Queue 0 Queue x

Figure 6 — Multiplexed queues in an SBP-2 task set

Because a single device function (logical unit) may be implemented as one or more services (protocols
used to control independently operable components of a function), each of which may require an
independent uni- or bi-directional transport flow, this document extends SBP-2 to permit multiplexed
gueues within a single task set, as illustrated by Figure 7. A queue is an ordered set of ORBs within a task
set that does not block with respect to other queues that are part of the same task set; each ORB in the
task set is tagged to identify the logical queue to which it belongs. Although the target may in general
reorder the execution of ORBs within the task set, all of the ORBs within a particular queue are executed
in order. Within this framework, both the initiator and the target manage the single task set illustrated
above as the collection of logically independent queues illustrated below. The dashed lines connecting
ORBs represent the logical ordering of ORBs within each queue, not the actual pointers that link ORBs in
the task set.

12

IDT_r02

May 19, 1999
WORKING TASK SET Not yet included in the task set
Queue 0 —» = f--—mmmmmmmmmmmmmmo o -
Queue 0 Queue 0
Queue x —» = fommmmmmmmmmmmmmme - >
Queue x Queue x Queue x
Queuey —» o I B > >
Queue y Queue y Queue y Queue y
Queue z —» L I B >
Queue z Queue z Queue z

Figure 7 — Independent queues (logical model)

In theory the size of an SBP-2 task set is bounded only by the amount of memory available to the initiator
to store ORBSs; in practice targets have sufficient memory to fetch only a subset of the task set, the
working set. Nonblocking behavior between the separate queues is achieved through cooperative use of
the target's working set. If the initiator never places more ORBs in the task set than the target can
accommodate in its working set, all outstanding ORBs may be fetched by the target and made available
for execution. Equipped with this knowledge, the initiator may restrict the number of outstanding ORBs on
a queue by queue basis so that a task slot in the working set is always available for each queue.
Nonblocking bi-directional data transfer between initiator and target may be accomplished through the use
of two queues, one for each direction.

4.3 Connection management

The multiplexed queue management scheme just described requires the allocation of target resources
(queue numbers and task slots) before it may be used. Collectively these resources constitute a
connection between a client and a service. This document defines methods by which connection(s) are
established and subsequently terminated and their resources freed.

Connections may be established by either an initiator or a target. Because of asymmetries in SBP-2, the
connection parameters differ dependent upon the source of the connection request—but at the transport-
independent level perceived by clients and services the connection mechanisms are peer-to-peer and
symmetric. When a client wishes to establish a connection with a particular service in the other device, it
provides a service ID, a unique string that specifies the desired service. Service IDs are maintained in a
separate registry and are assumed by this document to be well-known identifiers. If the specified service
exists in the other device (along with sufficient resources for the connection), the connection is created
and subsequently identified by the queue number(s) assigned to the connection.

Connections may be one of three different types:

— Unidirectional; the application data flow is one direction, either from the initiator to the target or vice
versa;

— Bi-directional (nonblocking); the application data flows in both directions with one queue used for
each of the directions; or

13

IDT_r02
May 19, 1999

— Bi-directional (blocking); the data flows in both directions via a single queue which has the potential
to block. Nonblocking behavior is not guaranteed by the transport but must be a property of the
application itself. The queue used for management services is an example of a bi-directional,
blocking queue, but because it is restricted to single-threaded, serialized use it cannot block.

Once a connection is established it persists across bus reset(s) until explicitly terminated or abandoned as
a consequence of a logout.

Just as either initiator or target may establish a connection, either may terminate the connection
regardless of which one created the connection. A disconnect may be synchronized with the transport flow
in order to gracefully end the connection or it may preempt the transport flow if necessary. Once the
disconnect is complete, the target resources (queue numbers and task slots) are available for reuse.

4.4 Data transfer between initiator and target

4.5 Control requests and responses

4.6 Unsolicited status

14

IDT_r02
May 19, 1999

5 Data structures

This document defines the format of those parts of the SBP-2 ORB and status block reserved by ANSI
NCITS.325-1998 for specification by command set standards. It also defines a format for control
information transferred between initiator and target. All data structures defined in the following clauses
shall be aligned on quadlet boundaries.

5.1 Transport flow ORBs

ANSI NCITS.325-1998 defines command block ORBs for SBP-2 devices; these have a common 20-byte
header and leave the definition of the subsequent quadlets to individual command set standards. Image
devices compliant with this standard shall use 32-byte command block ORBs (renamed transport flow
ORBs to emphasize their function) whose format is illustrated by Figure 8. Transport flow ORBs are used
to regulate the transfer of application data or control information between initiator and target.

anificant
— next ORB —
‘ | | | | | | | | | | | |
S data_descriptor —
| | | | | | | | | | | | | ‘ | | | | | | |
(2) rq(_of)mt r{d| spd | max payload | P |page_size data_size
| | | | | | | | | | | | T | | | | | | |
f|s|m| reserved queue signature
| |
— reserved —
| | | | | | | | | | | | | | ‘ | | | | | | | | | | | | |

!
least significant

Figure 8 — Transport flow ORB

The usage of the next_ ORB, data_descriptor, rq_fmt, spd, max_payload, page_size and data_size fields
and the notify and page_table_present bits (abbreviated as n and p, respectively, in the figure above) is

defined by ANSI NCITS.325-1998. The netify-bit shall-be-ene-and-the rg_fmt field shall be zero.

NOTE — For most SBP-2 implementations the notify bit should always be one so that the SBP-2 initiator
software may accurately determine completion status for each ORB; this is a consequence of the unordered
execution model. Other implementations that do not require completion status notification for each ORB may
be possible if information is shared between the SBP-2 initiator and its client application(s) but such
implementations are beyond the scope of this document.

The direction bit (abbreviated as d in the figure above) shall specify the direction of data transfer for the
buffer described by data_descriptor. If the direction bit is zero, the target shall use Serial Bus read
transactions to fetch data from the buffer (the flow direction is from the initiator to the target). Otherwise,
when the direction bit is one, the target shall use Serial Bus write transactions to store data in the buffer
(the flow direction is from the target to the initiator).

NOTE — The direction of data transfer is determined solely by the direction bit without reference to the queue
number. Unspecified behavior may occur if an ORB'’s direction bit does not match the expected data transfer
direction for the queue.

15

IDT_r02
May 19, 1999

The final bit (abbreviated as f in the figure above) shall be set to one to indicate that the initiator shall not

signal any ORBs with the same queue value as this ORB until the target allocates the queue number in a
future CONNECT request or response. Otherwise the value of final bit shall be zero and the initiator may
continue to signal ORBs for the queue.

The special bit (abbreviated as s in the figure above) provides additional information pertinent to
application data transferred from the initiator to the target. The meaning of the special bit is unspecified
when either of the data size or queue fields are zero or the direction ercentrel bit is one. Otherwise the
meaning and usage of the special bit are application-dependent and shall apply to all of the application
data contained within the buffer described by the ORB.

NOTE — Stream socket abstractions include the notion of out of band data, as some transport protocols allow
portions of incoming data to be marked as "special" in some way. These special data blocks may be delivered
to the user out of the normal sequence—for example, expedited data in X.25 and other OSI protocols or the
use of urgent data in TCP by BSD Unix. The special bit enables such usage to be mapped to a transport
protocol based on SBP-2.

The end_of _message bhit (abbreviated as m in the figure above) shall indicate whether or not a boundary
exists in the application data or control information transferred from the initiator to the target. The meaning
of the end_of _message bit is unspecified when the direction bit is one. Otherwise, when end_of message
is one, a boundary exists after the last byte of application data or control information described by the
ORB. In the case of application data, the nature of the boundary and its interpretation shall be specified by
the service definition. When the eontrel-bitis-one queue field is zero, the end_of _message bit shall also be
one; all control information for a single request or response shall be contained within one buffer.

NOTE — When end _of message is one and data_size is zero, a boundary exists at the end of application data
or_control_information previously transferred to the target. The target flushes this data to the receiving
application client and indicates the end of message condition.

NOTE — Need an example illustrative of the use of the end_of_message bit (MF to provide).

The queue field shall specify either queue zero or a queue number assigned the target in either a
CONNECT request or response. When the queue field is zero, the notify bit shall be one.

The signature field shall contain an identifying number assigned by the initiator and shall be unique within
the context of a queue. Individual data buffers are uniquely identified by the combination of queue and
signature. For a particular queue, an initiator shall not reuse a signature value until either the connection
has been reset (see 9.6) or a status block has been received for the ORB that logically follows in the
queue. This field is used to facilitate the resumption of data transfer after a bus reset or other transient
interruption while minimizing retransmission of data securely stored prior to the interruption (see Error!
Reference source not found.).

5.2 Status block

As described by ANSI NCITS.325-1998, a target may store status at an initiator status_FIFO address
when a request completes (successfully or in error) or because of an unsolicited event (device status
change). The status_FIFO address is obtained either explicitly from the ORB to which the status pertains
or implicitly from the fetch agent context. Whenever the target has status to report and is enabled to do so,
it shall store the status block shown below.

16

IDT_r02
May 19, 1999

most significant

src |resp(d| len sbp_status ORB_offset_hi

ORB_offset_lo r

status ajt|s|m reserved
L1 [R T R

residual

\\\\\\\\\\\\\\\\\\\\\\\\\\\\'\”\
least significant

Figure 9 — Status block format

The definition and usage of the src, resp, len, sbp_status, ORB_offset_hi and ORB_offset_lo fields, as
well as the dead bit (abbreviated as d in the figure above), are specified by ANSI NCITS.325-1998.

The len field shall have a value of three to indicate that the length of the status block is four quadlets.

The status field shall specify the completion status of the transport flow requested by the ORB, as
encoded by the table below.

status | Description

0 The application data or control information has been successfully
transferred; consult the residual field for details of the actual transfer length.

1 Invalid queue; the queue identified in the ORB has not been allocated to an
active connection.

2 Target reset by another initiator; all tasks aborted.

The attention bit (abbreviated as a in the figure above) indicates the availability of target control
information. When the attention bit is one, the initiator should post an ORB for queue zero to retrieve the
control information. Once set to one by the target, this bit shall remain set until the initiator successfully
retrieves the control information.

The target_data_pending bit (abbreviated as t in the figure above) indicates the availability of target
application data for the queue specified by the ORB identified by ORB_offset_hi and ORB_offset _lo.
When the target_data_pending bit is one, the initiator should post an ORB for the specified queue to
retrieve the application data. The target shall zero this bit when there is no pending application data
awaiting transfer to the initiator. The meaning of target data pending is unspecified for an unsolicited
status block.

The special bit (abbreviated as s in the figure above) provides additional information pertinent to
application data transferred from the target to the initiator. The meaning of the special bit is unspecified
when-the-value-of the-sre-field-is-two for an unsolicited status block or when (in the ORB identified by
ORB_offset_hi and ORB_offset_lo) either any of the data size or queue fields or the direction bit are zero
or-the-control-bit-is-one. The meaning and usage of the special bit are application-dependent and shall
apply to all of the application data contained within the buffer described by the ORB.

The end_of _message bit (abbreviated as m in the figure above) shall indicate whether or not a boundary
exists in the application data or control information transferred from the target to the initiator. The meaning
of the end_of _message bit is unspecified when the value of the src field is two or when the direction bit in
the ORB identified by ORB_offset_hi and ORB_offset_lo is zero. Otherwise, when end_of message is
one, a boundary exists after the last byte of application data or control information described by the ORB.
In the case of application data, the nature of the boundary and its interpretation shall be specified by the
service definition. When the control bit in the ORB identified by ORB_offset_hi and ORB_offset _lo is one,

17

IDT_r02
May 19, 1999

the end_of message bit in the associated status block shall also be one; all control information for a
single request or response shall be contained within one buffer.

The residual field shall specify the difference between the requested and actual data transfer lengths, in
bytes. If data has been transferred, the target shall calculate residual by subtracting the actual data
transfer length from the size of the buffer provided by the initiator. If no data has been transferred, the
meaning of residual depends upon the value of the direction bit of the ORB to which the status pertains.
When direction is zero (the flow direction is from the initiator to the target), the target shall calculate
residual by subtracting the size of the buffer provided by the initiator from the maximum acceptable data
transfer length. Otherwise, when direction is one (the flow direction is from the target to the initiator), the
target shall calculate residual by subtracting the minimum acceptable data transfer length from the size of
the buffer provided by the initiator. Negative values are-indicated shall be encoded in two’s complement
notation. A nonzero residual value is not necessarily indicative of an error.

5.3 Control information

Control information, both requests and their corresponding responses, may be exchanged between
initiator and target via command ORBs whose gueue field is zero centrel-bit-is-set-te-one. This indicates
that the data in the buffer (or the data to be stored in the buffer) associated with the ORB is control
information rather than application data. Only one control request or response shall be transferred by an
ORB; when the direction bit is zero the end _of message bit in the ORB shall be one, otherwise the
end_of message bit in the status block shall be one. If the initiator has provided more control information
than the target can accept or if the buffer is too small to receive all the target's control information, no
transfer shall take place and the residual field shall indicate the appropriate transfer size. The format of
the control information in the buffer is illustrated by Figure 10.

most significant
rq| ctrl_function response reserved
| | | | | | | | | | | | | ‘ | |

Lr parameter(s) 4t7
- b
‘ Ielast‘ si,q‘nifiéant

Figure 10 — Control information format

The rq bit shall specify whether the control function is a request or a response. A value of one indicates a
request.

The ctrl_function field shall specify the control function, as defined by the table below.

18

IDT_r02
May 19, 1999

ctrl_function Name Comment
0 Reserved for future standardization
1 CONNECT Establish a connection with a particular service
2 ABORT Immediately-terminate-a-connection-without regard
CORLRIECTOR] | feie cnmenl siotn
2 SHUTDOWN
UEUE
2 RESET Resynchronize a connection between a client
CONNECTION | application and the service
4 DISCONNECT | Terminate-a-connection-once-ithas-quiesced
5 SERVICE Query all the services implemented (identified by a
DIRECTORY | list of service Ids)
6 — 7F16 Reserved for future standardization

The response field is valid only when the rq bit is zero. In this case, it encodes a response indication for
the corresponding control function, as defined by the table below.

response | Definition

0 Request completed OK; response parameters are
meaningful.

1 Unknown control function.

2 Insufficient resources are available to complete the
request; the same request may succeed if resubmitted
later.

3 The service identified by the SERVICE_ID parameter
does not exist.

4 Mismatch between actual and expected queue
number parameter(s).

5 The connection request is refused.

6 The connection identified by the queue number
parameter(s) does not exist.

FFis Unspecified error.

The remainder of the control information, up to the maximum size specified by data_size in the ORB that
references the control information buffer, shall consist of zero ene or more parameters identified by a
parameter ID (see Table 1). Relative to the start of the buffer, each parameter shall be quadlet-aligned and

occupy an integral number of quadlets. The first parameter shall start in the second quadlet of control
information and subsequent parameters, if any, shall immediately follow the preceding parameter. The
order in which parameters appear is unimportant. Any quadlets that follow the last parameter, up to the
end of the control information, shall be cleared to zero.

19

IDT_r02

May 19, 1999

Table 1 — Parameter ID values

Parameter

Name

Value
restrictions

Description

(@]

0

Indicates end of parameter list in control information

(optional).

TASK_SLOTS

Minimum 1

For a particular connection, the maximum number of ORBs

permitted in the task set. The initiator shall observe the limit
established by the target and may optionally provide this
parameter to indicate a self-imposed limit. Task slots are
allocated per connection and may be used for any of the
connection's queues.

8216

SERVICE_ID

40 bytes
maximum

An ASCII text string (without leading or trailing blank
characters) that uniquely identifies a service.

12T_QUEUE

T2I_QUEUE

FF1s maximum

The queue number (within the context of a connection) used
for the transport of application data from the initiator to the
target

The queue number (within the context of a connection) used
for the transport of application data from the target to the
initiator

[00)
a1
(i
o

|

QUEUE_INFO

A bit map that reports the state of target data pending for
all queues implemented by the target.

(o]

MODE

Specifies the desired mode, datagram or stream, at the time
a connection to a service is established.

The parameter ID shall specify the parameter format, either immediate or variable-length. The most
significant bit of the parameter ID determines the format; parameters whose ID values are in the range
zero to 7Fg, inclusive, shall conform to the format specified by Figure 11 while those in the range 805 —

FFi6, inclusive, shall conform to the format specified by Figure 12. Defined-valuesfor-parameterib-are

given-inTtable-L; All parameter ID values not specified are reserved for future standardization.

The format of immediate parameters is shown below.

most significant

parameter_ID
| | | | | |

parameter_value
| | ‘ | | | | | | | ‘ | |

I I N B
least significant

Figure 11 — Immediate parameter format

The parameter_ID field shall specify the parameter, as encoded by Table 1.

The parameter_value field shall specify the immediate value of the parameter. Unless otherwise specified

for a particular value of parameter_ID, the value field shall contain an unsigned 24-bit number.

The format of variable-length parameters (which are usually ASCII text strings) is shown below.

20

IDT_r02
May 19, 1999

most significant
parameter_ID length
| | | | | | | | | |
] parameter_value L7
(- O —
| pad w‘ith zero bytes as necessary
| | | | | | | | | | | | | | | |

|
least significant

Figure 12 — Variable-length parameter format

The parameter_ID field shall specify the parameter, as encoded by Table 1.

The length field shall specify the parameter length, in bytes.

The parameter_value field shall contain the value of the parameter and shall commence with the most
significant byte of the parameter value. If the length of the parameter is not a multiple of four, the

parameter val

lue shaII be padded W|th tra|I|ng bytes of zero unless—ethem%e—speemed—tepa—pan&w

21

IDT_r02
May 19, 1999

6 Control and status registers

The control and status registers (CSRs) implemented by a target shall conform to the requirements
defined by this standard and its normative references. The CSRs may be arranged in three principal

categories:

— core registers defined by draft standard IEEE P1212r and required by either that standard or this

document;

— bus-dependent registers required by IEEE Std 1394-1995; and
— unit architecture registers required by ANSI NCITS 325.1998.

The relevant standard shall be consulted for details of register definition and usage; the table below
provides a quick reference that summarizes all CSRs used by this document. Except for the optional
MESSAGE_REQUEST and MESSAGE_RESPONSE registers, all of the CSRs are mandatory.

Offset Register name Description
0 STATE_CLEAR State and control information
4 STATE_SET Sets STATE_CLEAR bits
8 NODE_IDS Contains the 16-bit node_ID value used to
address the node
Cis RESET_START Resets the node’s state
1816 — 1C1s SPLIT_TIMEOUT Time limit for split transactions
8016 — BC16 MESSAGE_REQUEST Message area for target requests when no
login exists
C016 — FC16 MESSAGE_RESPONSE Message area for initiator responses to
target requests addressed to
MESSAGE_REQUEST.
21016 BUSY_TIMEOUT Controls transaction layer retry protocols
specified by MANAGEMENT_AGENT Login and other SBP-2 task management
configuration ROM requests
AGENT_STATE Reports SBP-2 fetch agent state
AGENT_RESET Resets SBP-2 fetch agent
o . ORB_POINTER Address of current ORB
specified by login -
response data DOORBELL Signals SBP-2 fetch agent to refetch an
address pointer
UNSOLICITED_STATUS_ENABLE Acknowledges the SBP-2 initiator’s receipt
of unsolicited status

23

IDT_r02
May 19, 1999

7 Configuration ROM

All devices compliant with this standard shall implement general format configuration ROM in accordance
with IEEE Std 1394-1995, ANSINCITS-325-1998; draft standards IEEE P1394a and IEEE P1212r and the
additional requirements of this document. Targets compliant with this standard shall also conform to the
configuration ROM requirements of ANSI NCITS.325-1998, except as specifically exempted by this
document. General format configuration ROM is a self-descriptive structure; an example appropriate to a
target is illustrated below.

Master
keyword leaf
Keyword
leaf

Bus information Instance Feature
block directory directory

Unit /

ROOt directory [e directory \

Dependent
leaf

Figure 13 — Example configuration ROM hierarchy

With the exception of the dependent leaf (shown shaded), all of the configuration ROM components
shown above are required for targets compliant with this standard. The connection from the root directory
to the unit directory (shown by a dashed line) is optional; instance directories are the preferred access
routes for unit directories.*

a initialization-completes,-general-format-configuration-shall-be-accessible-to-readrequests- In addition
to the requirements of the referenced standards and draft standards, the first five quadlets of configuration
shall conform to the format illustrated by Figure 14.

! ANSI NCITS 325-1998 mandates a Unit_Directory entry in the root directory; this document is noncompliant in that
respect and adheres to the more contemporary recommendations of draft standard IEEE P1212r.

25

IDT_r02
May 19, 1999

most significant

bus_info_length crc_length crc
L L
3116 (Hl") 3316 (H3") 3916 (“9") 3416 (H4")
| | | | | | | | | | | | | | | | | | | |
m|c|i|b]|p|reserved cyc_clk_acc max_rec |max_ROM | generation | r |link_spd
L L L L L L L L L L L L L L L L L L L L

node_vendor_ID
‘ | | | | | | |

chip_ID_hi

least significant

chip_ID_lo
1

Figure 14 — First five quadlets of configuration ROM
The bus_info_length field shall have a value of four.

The crc_length field shall have a value of four plus the size, in quadlets, of the root directory. This
indicates that the crc field is calculated for both the bus information block and the root directory—but not
for any of the other configuration ROM data structures. The value of the crc field shall be calculated in
accordance with draft standard IEEE P1212r.

The second quadlet shall contain the string “1394” in ASCII characters as specified by draft standard IEEE
P1394a.

The meaning and usage of the irmc, cmc, isc, bmc and pmc bits (abbreviated as m, c, i, b and p,
respectively, in the figure above) and the cyc clk _acc, max_rec, max_ROM, generation, link_spd,
node_vendor_ID, chip_ID_hi and chip_ID_lo fields are specified by draft standard IEEE P1394a.

The max_rec field shall have a minimum value of five.
The max_ROM field shall have a minimum value of one.

TO BE DETERMINED — The minimum value of one requires image devices to support block read requests
aligned on 64-byte addresses with a data length of 64 bytes. | think it would be preferable to require a
max_ROM value of two to indicate support for block read requests aligned on quadlet addresses with a data
length less than or equal to 1024 bytes. The 1394 PWG has yet to make a decision; this will affect minimum
requirements for max_rec.

7.1 Root directory

Configuration ROM for devices compliant with this standard shall contain a root directory. The root
directory immediately follows the bus information block and has an address of FFFF FO00 0414.
Relevant mandatory and optional entries for the root directory are summarized by the table below; unless
explicitly excluded, any optional root directory entries permitted by draft standard IEEE P1212r are also
permitted by this document.

26

IDT_r02
May 19, 1999

Table 2 — Root directory entries

Directory entry

Name Type Mandatory | Description

Vendor_ID I Y 24-bit RAC ID of the vendor that manufactured the
device. This entry shall be immediately followed by
a Textual_Descriptor entry. The addressed textual
descriptor leaf (or leaves, if an intermediate textual
descriptor directory exists) should contain an
informal form of the vendor name easily
recognizable by users.

Node_Capabilities Y Identifies which options of the CSR architecture
are implemented.

Node_Unique_ID L Although permitted by draft standard IEEE P1212r,
devices compliant with this standard shall not
include a Node_Unique_ID entry in the root
directory.

Keyword_L eaf L "Thumbnail" description of the characteristics of
the all instances implemented by the device.

Instance_Directory D Y The instance directories provide a method to group
unit architectures (software protocols) to identify
shared physical components.

Unit_Directory D Unit_Directory entries are applicable only for
targets. The use of Unit_Directory entries in the
root directory is discouraged; designers should
consult draft standard IEEE P1212r for more
information.

The Vendor_ID entry shall contain the RAC ID of the vendor that manufactured the device and shall be
immediately followed by a Textual _Descriptor entry that specifies the location of either a textual descriptor
directory or leaf. The referenced textual descriptor leaf or leaves should contain an informal (short) form of
the company name of the vendor.

A Keyword_Leaf entry is optional within the root directory and, if present, shall specify the location of a
keyword leaf in configuration ROM. The keywords included in the keyword leaf shall be the union of all
keywords from all keyword leaves in the device’s configuration ROM. Simple devices that implement only
one instance may reuse its keyword leaf as the master keyword leaf.

At least one Instance_Directory entry is required in the root directory; each shall specify the location of an
instance directory in configuration ROM.

7.2 Instance directories

Configuration ROM for devices compliant with this standard shall contain one or more instance directories,
each of which describes the function(s) implemented by a particular instantiation within the device. The
mandatory and optional directory entries for an instance directory are specified by draft standard IEEE
P1212r.

All instance directories shall contain a Keyword_Leaf entry.

27

IDT_r02
May 19, 1999

7.3 Feature directories

All unit directories compliant with the requirements of clause 7.4 shall contain a Feature_Directory entry
that specifies the location of a feature directory whose content and meaning are compliant with this
clause. Configuration ROM may contain feature directories whose content and meaning are specified
either by this standard, another organization or vendor. Relevant mandatory and optional entries for
feature directories compliant with this document are summarized by the table below; unless explicitly
excluded, any optional feature directory entries permitted by draft standard IEEE P1212r are also
permitted by this document.

Table 3 — Feature directory entries

Directory entry

Name Type Mandatory | Description
Specifier_ID I Y 24-bit RAC ID of the directory specifier, 00 5029¢.
Seftware—Version I Y In combination with the directory specifier ID, it

identifies the software interface for the unit.

Service_ID L ? Collection of service ID text strings for all services
implemented for the instance or unit.

Device_ID D Y Device identifier commonly used for plug and play
device enumeration.

Initiator Capabilities Indicates that the instance can function as an
SBP-2 initiator.

The Specifier_ID entry, whose 24-bit immediate value shall be 00 502954, and the Seftware—Version entry,
whose 24-bit immediate value shall be TBD, identify this document as the specification of the feature
directory.

The Service_ID entry shall specify the location of a leaf in configuration ROM that contains text strings,
each of which is the service ID of a service implemented by the instance or unit. The format of the leaf
shall be identical to that specified by draft standard IEEE P1212r for keyword leaves.

The Device_ID entry shall specify the location of a textual descriptor leaf in configuration ROM that
contains a device identifying string in the format specified by IEEE Std 1284-1994 clause 6.6.

TO BE DETERMINED - Is this the right way to do this? Or should a textual descriptor leaf be associated with
some other entry? Is the device ID string correlated with a device driver? If so, it probably doesn’t belong in the
feature directory but in the unit directory.

7.4 Keyword leaves

Each instance directory shall be characterized by a set of appropriate keywords selected from Table 4 and
placed in a keyword leaf referenced by a Keyword Leaf entry in the instance directory. Additional
keywords may be present in any keyword leaf, but their meaning and usage are beyond the scope of this
standard. Instances that share exactly the same set of keywords may reference the same keyword leaf.

Table 4 — Recommended keywords

Keyword Recommended usage

CAMERA
COLOR

28

IDT_r02
May 19, 1999

Keyword Recommended usage

DISK
FAX
IMAGE

INITIATOR Identifies the presence of initiator capabilities
independently of target capabilities.

MFP
MODEM
PHOTO
PRINTER
RECEIVE
SBP-2
SCANNER
SEND

7.5 Unit directories

Configuration ROM for devicestargets compliant with this standard shall contain one or more unit |
directories, each of which specifies a software interface (unit architecture) for a device function. Relevant
mandatory and optional entries for unit directories are summarized by the table below; unless explicitly
excluded, any optional unit directory entries permitted by draft standard IEEE P1212r or ANSI
NCITS.325-1998 are also permitted by this document.

29

IDT_r02

May 19, 1999
Table 5 — Unit directory entries
Directory entry
Name Type Mandatory | Description
Specifier_ID I Y 24-bit RAC ID of the directory specifier.
Seftware—Version I Y In combination with the directory specifier ID, it
identifies the software interface for the unit.
Command_Set_Spec_ID Y 24-bit RAC ID of the command set specifier,
00 502916.
Command_Set Y In combination with the command set specifier ID,

it identifies the command set for the unit.

Management_Agent Y Provides the address of the SBP-2
MANAGEMENT_AGENT register for login to the
device.

Unit_Characteristics I

Logical_Unit_Number I

Reconnect_Timeout I TBD—Is this entry mandatory and if so what is the
minimum value for max_reconnect_hold?

Feature_Directory D Y Additional information that describes features

(usually independent of the software interface and
command set) of the unit. At least one of the
feature directories shall be specified by this
standard.

The Specifier_ID entry, whose 24-bit immediate value shall be 00 609E,¢, and the Seftware—Version entry,
whose 24-bit immediate value shall be 01 0483, identify the device as compliant with ANSI

NCITS.325-1998, SBP-2.?

The Command_Set_Spec_ID entry, whose 24-bit immediate value shall be 0050295, and the
Command_Set entry, whose 24-bit immediate value shall be TBD, identify the device as compliant with
this document. The optional Command_Set_Revision entry, if present, shall have a 24-bit imnmediate value

of zero.

The Unit_Characteristics entry shall specify a vendor-dependent mgt_ ORB_timeout and an ORB size of

eight quadlets (32 bytes). Consult ANSI NCITS.325-1998 for details.

Devices compliant with this standard shall contain a single Logical_Unit_Number entry for logical unit zero
in each unit directory. The entry shall specify an unordered execution model (the ordered bit shall be zero).

The device_type field shall contain a value specified by the table below.

2 The names given are those used by draft standard IEEE P1212r; they correspond to the names Unit_Spec_ID and

Unit_SW_Version, respectively, in both ISO/IEC 13213:1994 and ANSI NCTIS.325-1998.

30

IDT_r02

May 19, 1999
device_type | Peripheral device type
2 Printer
3 Processor
6 Scanner
9 Communications
1Fi6 Unspecified device type; command set-dependent means
are necessary to determine the peripheral device type

NOTE — Because connections between client(s) and service(s) cannot be reestablished after a reconnection
failure, designers should give careful consideration to a value for max_reconnect hold appropriate to the
intended application.

TO BE DETERMINED - Is service ID discovery a sufficient “command set-dependent” method of peripheral
device type discovery? Or do we need a new control request and response? Alternatively, should the
device_type field in all the Logical_Unit_Number entries be 1F6? | think the latter; user service ID discovery in
all cases.

There shall be at least one Feature_Directory entry that specifies the location of a feature directory whose
content and meaning are specified by this standard. There may be additional Feature_Directory entries
that reference feature directories whose content and meaning are specified either by this standard,
another organization or vendor.

31

IDT_r02
May 19, 1999

8 Control operations

Before application client(s) and service(s) may exchange data in uni- or bi-directional transport flows
(explained in detail in section 9), control operations are necessary to set up the communication paths. This
section specifies the methods used by both initiator and target to establish and manage connections for
these transport flows.

8.1 Login and queue zero

Access to a target compliant with this standard commences with an SBP-2 login request by the initiator.
Upon successful completion of the login request, the target has reserved resources for the use of the
initiator:

— SBP-2 registers unigue—to assigned by the target at the time of the login (the AGENT_STATE,
AGENT_RESET, ORB_POINTER, DOORBELL and UNSOLICITED_STATUS_ENABLE registers);

— queue zero, the control operations queue; and

— two task slots for use by queue zero ORBs.

Once queue zero exists, either initiator or target may use it in a peer to peer fashion to communicate
control information, requests or responses, to the other. At no time shall the task set contain more than
two ORBs whose queue field is zero.

The completion of a request requires two ORBSs, one, which describes the control information buffer that
contains the request and a complementary ORB which describes the control information buffer for the
response. Although queue zero provides full peer to peer functionality between initiator and target, the
details of its use are asymmetric and vary according to whether the initiator or the target is the requester.

When an initiator issues a request to a target, they shall perform the following operations:

a) The initiator shall store the request and its associated parameters (if any) in a buffer in its—own
system memory and signal to the target fetch agent an ORB, whose queue field and direction bit are
zero and eontrol-and end_of _message bit is one, that describes the control information buffer; |

b) The target shall fetch the ORB and read the control information buffer. The status block stored by
the target to complete the ORB shalimay have its attention bit set to one to indicate that the target |
intends to transfer control information (the response) to the initiator;

c) At any time the initiator receives a status block whose attention bit is one and there is no ORB in the

task set whose queue field is zero and direction;—centrol-and-end—ef-message bit is one, the initiator |
shall create such an ORB and place it in the task set; and

d) Once the target has executed the indicated request and there is an ORB in the working set whose
gueue field is zero and direction,—contrel-and-end—of-message bit is one, the target shall store the |
response data in the buffer described by the ORB and then store completion status for the ORB. So
long as the target has pending control information to transfer to the initiator, it shall continue to set
the attention bit to one in any status block (including unsolicited status) stored into the initiator
status_FIFO.

NOTE — In order to reduce ORB fetch latency, the initiator may place two control information ORBs in the task
set at the same time, the first for the request (with a direction bit of zero) and the second for the response (with
a direction bit of one). Although the algorithm described above works correctly even if the initiator awaits a
status block whose attention bit is one before signaling a target response ORB to receive the response data, it
is more efficient to post both ORBs at the same time.

When a target issues a request to an initiator, they shall perform the following operations:

33

IDT_r02
May 19, 1999

a)

b)

c)

d)

The target shall set the attention bit to one in a status block stored into the initiator status_FIFO.
Either unsolicited status or completion status associated with an ORB may be used. So long as the
target has pending control information to transfer to the initiator, it shall continue to set the attention
bit to one in any status block stored into the initiator status_FIFO.

At any time the initiator receives a status block whose attention bit is one and there is no ORB in the

task set whose queue field is zero and direction;—centrol-and-end—ef-message bit is one, the initiator

shall create such an ORB and place it in the task set;

Once there is an ORB in the working set whose queue field is zero and direction,—centrel-and
end—of-message bit is one, the target shall store the control information data (request) in the buffer
described by the ORB and then store completion status for the ORB. The attention bit shall be zero
in the status block associated with the ORB;

When the initiator has executed the indicated request, it shall store the response and its associated
parameters (if any) in a buffer in its-own system memory and signal to the target fetch agent an ORB
that describes the control information buffer. The ORB’s queue field and direction bit shall be zero
and the eontrel-and end_of _message bit shall be one;

The target shall fetch the ORB and read the response from the control information buffer. The status
block stored by the target to complete the ORB may have its attention bit set to one if the target
intends to transfer other control information (request or autonomous response) to the initiator.

It is possible for both initiator and target to initiate requests at roughly the same time. In this case the
working set contains an ORB for transfer of the request from initiator to target while the status block
attention condition is simultaneously asserted by the target. The ordered execution properties of queue
zero give a natural precedence to initiator requests over target requests, as follows. When a target fetches
| an ORB whose queue field and direction bit are zero and whose eentrol-and end_of message bit is one,
the request contained in the control information shall be processed before a request is transferred to the
initiator. Consequently, if a target has an uncompleted initiator request when it fetches an ORB whose

| queue field is zero and whose direction—centrol-and-end—ofmessage bit is one it shall not store any
control information except the response that completes the request.

When neither initiator nor target have outstanding requests or responses, the control queue (queue zero)
is idle and there shall be no ORBs in the task set whose queue field is zero.

8.2 Autonomous response information

The preceding clause describes the use of queue zero for request / response pairs between initiator and
target. It is also possible for either initiator or target to autonomously transfer response information to the
other. Autonomous response information is typically status information and does not necessarily require
any additional action on the part of the recipient.

Autonomous response information may be sent for any of the ctrl_function values enumerated in the table
below.

ctrl_function Name
4 SERVICE DIRECTORY
5 STATUS

The response code in autonomous response information shall be zero.

Autonomous response information shall not be transferred while there is an uncompleted control request.
A target requests the transfer of autonomous response information by means of the status block attention
bit. If a target asserts attention and subsequently fetches an initiator request ORB, it shall first complete
the initiator’s control request and transfer the corresponding response information to the initiator before

34

IDT_r02
May 19, 1999

transferring the autonomous response information. The attention bit shall remain asserted in any status
blocked stored in the initiator status_FIFO while the transfer of the autonomous response information is
pending.

8.3 Service discovery

Services implemented by either initiator or target are uniquely identified by their service ID, an ASCII string
registered with TBD. A client application that wishes to establish a connection with a particular service
may attempt the connection without a priori knowledge that the service is implemented or the client
application may request service directory information.

A service discovery request shall have a ctrl_function code of SERVICE DIRECTORY and no parameters.
The response information shall contain zero or more SERVICE_ID parameters that identify all of the
services implemented. The order of the SERVICE_ID parameters in the response is unspecified.

TO BE DETERMINED — Some method of “paging” through large quantities of service ID information needs to
be agreed.

8.4 Connection management

Table 6 — Connection type encoded by queue ID parameters

Connection type 12T_QUEUE value T2I_QUEUE value

unrestricted —

Unidirectional -
— unrestricted

Bi-directional

(nonblocking) not equal to T2I_QUEUE | not equal to 12T_QUEUE

Bi-directional

(blocking) equal to T2I_QUEUE equal to I2T_QUEUE

8.4.1 Connection establishment

Before a client application may communicate with a service, necessary resources shall be allocated and
confirmed by means of a control request with a ctrl function code of CONNECT and its corresponding
response. The operations are fundamentally similar whether the service resides at the initiator or the
target, but because the initiator and target control different resources, the procedures are described

separately.

The only initiator resource required for a connection is sufficient system memory to hold the ORBs for that
portion of the task set allocated to the connection.

The target resources required for a connection are one or two available queue numbers, local memory to
hold active ORBs and their associated context (up to the maximum set by the target via the TASK _SLOTS
parameter) and an application client to provide the requested service.

Once a successful response has been received for a connection request, the initiator may place ORBs
into_the task set that use the gueue number(s) specified in the target response data. The gueue
number(s) remain valid until either a LOGOUT (either explicit on the part of the initiator or implicit as the

35

IDT_r02
May 19, 1999

result of a failure to reconnect after a bus reset), a shutdown of either or both queues or the connection is
aborted.

8.4.1.1 Connection established by an initiator

When an application client at an initiator desires to establish a connection with a target service, it shall
create a control operation ORB whose buffer contains a CONNECT control request. The initiator _shall
specify the SERVICE ID and MODE parameters. The initiator may specify the TASK _SLOTS parameter,
in_which case the initiator shall guarantee that the task set never contains more active ORBs for the
connection than the value set by TASK SLOTS.

If the connection is established, the target shall return response data that specifies TASK _SLOTS and one
or both of the 12T QUEUE and the T2l QUEUE parameters. When the initiator has provided the optional
TASK SLOTS parameter in its request, the target should return a TASK SLOTS value less than or equal
to that specified by the initiator.

Connection requests may fail because of a lack of target resources. This failure _mode is probably
transient; if the CONNECT control request is retried at some unspecified future time it may succeed.
Other failure modes, indicated by the resp code, are fatal and should not be retried.

8.4.1.2 Connection established by a target

An _application client at an initiator that desires to establish a connection with an initiator service shall
create _a buffer that contains a CONNECT control request and signal the initiator to retrieve the control
request by asserting the attention bit in a status block. The CONNECT control request shall specify the
SERVICE ID, MODE, TASK SLOTS and one or both of the 12T QUEUE and T2l QUEUE parameters. If
the connection is _established, the initiator shall guarantee that the task set never contains more active
ORBs for the connection that the TASK SLOTS value provided by the target.

If the request service exists at the initiator and supports the requested transport flow mode, datagram or
stream, the connection may be confirmed by a control response from the initiator. No parameters are
required in the control response, but if the initiator specifies the TASK SLOTS parameter it shall
guarantee that the task set never contains more active ORBs for the connection than the value provided.

The initiator shall not use the queue number(s) identified by the 12T QUEUE or T2I QUEUE parameters
until_successful completion status has been stored at the initiator's status FIFO for the ORB that
transferred the control response to the target.

Just as a target may refuse a connect request because of insufficient resources, sSo may an initiator. Such
a failure is probably transient and may be retried at some unspecified future time.

8.4.2 Shutting down a queue

8.4.3 Aborting a connection
8.4.4 Resetting a connection

8.5 Queue status information

36

IDT_r02
May 19, 1999

9 Transport flow operations

Once a connection is established between a client application and a service, work is accomplished by the
uni- or bi-directional flow of application-dependent data between the two. This section describes transport
flow (and error recovery procedures) from the viewpoint of a queue instead of that of a connection; the
reader may generalize the from a single queue's operation to two coordinated queues that form a
nonblocking bi-directional connection.

Service implementers select a datagram or stream model of transport flow. The datagram model is the
simplest: there is a one-to-one relationship between ORBs, buffers and service data units (SDUs)
messages, as illustrated by Figure 15. The end of an SDU is demarcated by the end of message bit,
which is always one when the datagram model is used.

l ORBs Buffers

Figure 15 — Transport flow (datagram model)

The stream model permits SDU boundaries (e.g., the separation between pages or print jobs for a printer) ‘
to occur without regard for the boundaries between data buffers specified by different ORBs. Figure 16
illustrates the relationship between stream data, the ORBs that describe its buffers and the SDUs.

lORBs Buffers
@ -
Sbu |
r—— Sbu |
< g B
' Sbu |
y =
@ | g DpepepnpSu BBt Sbu |

Figure 16 — Transport flow (stream model)

37

IDT_r02
May 19, 1999

9.1 Data transfer to a target

Application data is transferred to a target by means of transport flow ORBs placed-inan2TF—QUEUE and
whose direction and-contrel bit is zero. Within the limits of TASK_SLOTS allocated by the target at the

time the connection (te-which-the 2T QUEUE pertains identified by the queue field) was established, the

initiator may post more than one such outstanding transport flow ORB to the task set at a time. ORB fetch
latency is reduced if the initiator is permitted to have at least two such outstanding ORBs in the task set.

The target transport may use read requests that address the data buffer in arbitrary order so long as none
of the data is presented to an application client out of order. Upon successful completion of the data
transfer, the residual field in the status block shall be zero.

The transport flow mode, datagram or stream, established when the connection was created, governs
behavior when the initiator has more data available than the target is capable of processing at one time.
For stream mode, this condition cannot arise; the target transfers data within the limits of local memory,
delivers the data to the application client and continues to transfer data as local memory is released by the
application client. Barring an unrecoverable error in the data transport or application client, all of the data
described by the ORB is eventually transferred.

When datagrams are used, the possibility exists that an SDU is larger than the maximum acceptable to
the target. In this case, no data shall be transferred and the residual field shall indicate the error condition.
Figure 17 shows the relationship between the initiator’s data buffer, the maximum SDU acceptable to the
target and the value of residual. For simplicity, the figure assumes that no page table is used.

/‘
Maximum SDU
data_size <
: residual
_ (negative)

Figure 17 — Excess initiator data (datagram model)

The initiator may calculate the target’'s maximum acceptable SDU size by adding residual to data_size.

9.2 Data transfer to an initiator

Application data is transferred to an initiator target by means of transport flow ORBs placed—in—a
T2QUEUE and whose direction bit is one and-centrel-bit-is—zere. Within the limits of TASK_SLOTS
allocated by the target at the time the connection (to-which-the-T2I-QUEUE pertains identified by the
queue field) was established, the initiator may post more than one such outstanding transport flow ORB to
the task set at a time. ORB fetch latency is reduced if the initiator is permitted to have at least two such
outstanding ORBs in the task set.

The target transport may use write requests that address the data buffer in arbitrary order so long as
successful completion status is not reported to the initiator until all of the data has been transferred. Upon
successful completion of the data transfer, the residual field in the status block shall be zero.

The transport flow mode, datagram or stream, established when the connection was created, governs
behavior when the target has more data available than the initiator is capable of processing at one time.
For stream mode, this condition cannot arise; the target transfers data (supplied by its application client)

38

IDT_r02
May 19, 1999

within the limits of the data buffer provided by the initiator; if more data is available from the application
client, the target data pending bit shall be one and the target awaits a subsequent ORB for the same
queue whose direction bit is one. Unless an unrecoverable error occurs in the data transport, the target
continues to fill initiator buffers so long as data is available.

When datagrams are used, the possibility exists that an SDU available at the target is larger than data
buffer provided by the initiator. In this case, no data shall be transferred and the residual field shall indicate
the error condition. X shows the relationship between the initiator's data buffer, the SDU available at the
target and the value of residual. Although the figure assumes that no page table is used, the relationships
remain valid if a page table is present—except that the buffer size is summed from the page table
elements instead of being directly available as data-size.

/‘
data_size
Sbu <
: residual
b (negative)

Figure 18 — Excess target data (datagram model)

The initiator may calculate the minimum buffer size necessary to receive the SDU by subtracting residual
from data_size.

9.3 Completion status

The target shall signal completion status for a transport flow ORB by storing a status block to the initiator
status_FIFO active for the login. Unless the buffer is sized incorrectly or a nonrecoverable error occurs,
the target shall transfer all the data specified by the ORB and receive a response subaction of
resp_complete for each data transfer request subaction before it stores completion status to the initiator
status_FIFO. In-the-case-of-a-honrecoverable-error; All pending request subactions for the data transfer
specified by the ORB shall either be completed ortimed-eut before the target stores a status block for the
ORB to the initiator status_FIFO.

9.4 Execution context for active ORBs

This document _specifies a data transport between services and their application clients that is reliable
across interruptions such as a bus reset. The data transport is not only robust in these circumstances, but
efficient. Data transfer may be quickly resumed without the necessity to redundantly move data already
stored in or retrieved from an initiator’s buffers. This is accomplished by cooperation between initiator and
target in the use of the signature information field in transport flow ORBs. The signature field provides a
method for the target to recognize an ORB already in progress if it is signaled after a bus reset.

In order to recognize and correctly resume execution for duplicate ORBs, the target shall maintain context
information (a history loq) for each active ORB. An ORB is active from the time the target fetches it and
commences data transfer’ up until the time completion status for the ORB is stored at the initiator's

% The exact point in time at which an ORB becomes active is implementation-dependent and consequently difficult to
define. An ORB is not yet active if the same ORB, signaled by an initiator after a bus reset, does not require
context information in order for the target behavior to be essentially the same as if no bus reset had occurred.
Whether or not data has been transferred is often an unreliable measure of an ORB'’s active status. For example, if
a printer is designed to accumulate some minimum guantity of data before commencing image transfer to the
medium, and ORB might not be active until print engine started.

39

IDT_r02
May 19, 1999

status_FIFO and either an ack OK or and ack pending and a subsequent response of resp _complete are
received by the target.

The exact details of context information maintained by a target are implementation, but the context shall
be sufficient to correctly resume execution of a duplicate ORB if signaled by the initiator after a bus reset.
At a minimum, context information consists of the direction, special and end of message bits and the
queue and signature fields for each active ORB. Context information probably includes the original buffer
size (derived from page table entries if a page table is associated with the ORB), the amount of data
already transferred or remaining to be transferred and a pointer to the current location within the data
buffer.

Under normal circumstances, context information may be discarded when the target receives a successful
completion response after storing the status block at the initiator's status FIFO.

9.5 Error recovery

This clause is meant to cover target and/or initiator behavior under all possible error scenarios: missing
acknowledgements, split time-outs, unrecoverable data errors, retry limits exceeded, etc.

9.6 Bus reset

Upon a bus reset, the target aborts all task sets and awaits reconnection from initiator(s) active prior to the
reset. Once an initiator successfully completes a RECONNECT with the target, its client application(s) and
service(s) may resume data transfer with target service(s) or client application(s) and service(s) on a
connection by connection basis.

Data transfer between a client application and a service may have caused device operations to
commence even if not all the data had been transferred before the bus reset. For this reason, it is
essential for each connection to be resynchronized by one of two methods. The simplest case is to
abandon any operations in progress, flush initiator and target buffers as necessary and return both
endpoints of the connection to a known state—at which point the abandoned operation(s) may be
reinitiated.

Although this method of recovery from a bus reset is robust, it may be improved upon. If the client
application and service can reliably resume data transfer from the point it was interrupted, it may be
unnecessary to cancel operations and flush buffers. In order for this method to work, the transport must
be able to recognize resumption of an ORB in progress at the time of the bus reset. The signature field in
a transport ORB provides a method by which identical ORBs may be recognized if they are resubmitted
after a reset.

An initiator may implement the simpler recovery procedure by issuing a RESET CONNECTION control
operation to the target. The connection to be reset shall be identified by the same 12T_QUEUE and
T2l_QUEUE parameters provided by the target when the connection was established. Until the RESET
CONNECTION control operation completes successfully, the initiator shall not signal any ORBs to the
target whose queue field is equal to either the 12T_QUEUE or T2I_QUEUE parameter for the connection.
Once a connection has been reset, ORBs may be signaled on the connection's queue(s) independent of
the status of other connections for the same login.

If the initiator elects not to reset the connection, data transfer may be safely resumed if initiator and target
can identify, for each queue, the ORB active at the time of the bus reset. For a particular queue, the active
ORB is the oldest outstanding ORB when the bus reset occurred. When an initiator does not reset a
connection, it shall perform the following steps for each queue that forms the connection:

a) If there were no uncompleted ORBs in the task set whose queue field identifies one of the queue(s)

that form the connection, no action is necessary and the initiator may resume data transfer for the
connection;

40

IDT_r02
May 19, 1999

b) Otherwise, for the oldest uncompleted ORB for each of the connection's queues, the initiator shall
signal an equivalent ORB to the target fetch agent. Certain parts of the ORB shall remain
unchanged: the direction, eentrel; special and end_of message bits and the queue and signature
fields shall have the same values both before and after the bus reset. The data_descriptor, and
data_size fields and the page_table present may have different values but they shall describe a
buffer of the same size and whose contents are identical to the buffer described by the ORB aborted
by the bus reset. The spd and max_payload bits may differ as a result of a different topology
between the initiator and target after the bus reset.

c) ORBs for a particular queue (other than the oldest ORB) shall be interpreted by the target as if they
are new; there are no restrictions on their field values. This is wrong; ignore this clause until the next
revision. Neve i : : : He i :

NOTE — A straightforward implementation for the initiator transport is to signal equivalent ORBs (subject to the
requirements in the preceding paragraph) in exactly the same order (for each queue) that they were signaled
prior to the bus reset. This strategy is known to work but other implementations are possible.

The target shall detect an error if the initiator does not reset a connection and subsequently, for eitherany
of the connection's queues, signals an ORB to the target whose signature field is not equal to the
signature of the active ORB for that queue at the time of the bus reset. If this occurs, the target shall abort
the ORB with a status of TBD and reset the connection. The target shall communicate an autonomous
RESET CONNECTION response to the initiator and continue to abort all ORBs signaled for one of the
connection's queues until the autonomous response has been successfully transferred to the initiator.

41

IDT_r02
May 19, 1999

Annex A
(normative)

Minimum Serial Bus node capabilities

In addition to the minimum capabilities defined by IEEE Std 1394-1995, ANSI NCITS.325-1998 and draft
standard IEEE P1394a, this annex specifies other capabilities or restrictions mandated by this standard.

A.1 Initiator capabilities

TO BE DETERMINED — Review all of these (from SBP-2) and determine if this profile requires any GREATER
capabilities.

With the exception of configuration ROM and control and status registers, an initiator shall be capable of
responding to block read or write requests with a data_length less than or equal to 32 bytes.

An initiator shall also be capable of responding to block read requests with a data_length less than or
equal to 4 * ORB_size, where ORB_size is obtained from the Unit_Characteristics entry in the target's
configuration ROM.

For the largest value of max_payload specified in any command block ORB signaled to the target, the
initiator shall be capable of responding to block read and write requests with a data length less than or
equal to 2 M¥-P0ad* 2y tag

The initiator shall report the largest of these possible data length values by setting the value of the
max_rec field in the bus information block in its configuration ROM to a value equal to or greater than (log,
data_length) - 1.

A.2 Target capabilities

TO BE DETERMINED — Review all of these (from SBP-2) and determine if this profile requires any GREATER
capabilities.

A target shall be capable of responding to block read or write requests with a data_length equal to eight
bytes if the destination_offset specifies either the MANAGEMENT_ AGENT or the ORB_POINTER
register.

A target shall be capable of initiating write requests and shall report this by setting the drq bit in the
Node_Capabilities entry in configuration ROM to one. Consequently, the target shall implement the dreq
bit in the STATE_CLEAR and STATE_SET registers. The value of STATE_CLEAR.dreq shall be
unaffected by a Serial Bus reset. The target may automatically set dreq to zero (request initiation enabled)
upon a power reset or a command reset.

A target shall be capab

le of initiating block write requests with a data_length of at least eight16 bytes and

While initializing after a power reset, a target shall respond to quadlet read requests addressed to
FFFF FO00 0400,¢ with either a response data value of zero or acknowledge the request subaction with
ack_tardy, as specified by draft standard IEEE P1394a. This indicates that the remainder of configuration
ROM, as well as other target CSRs, are not accessible.

43

IDT_r02
May 19, 1999

Targets shall support management request functions addressed to the MANAGEMENT_AGENT register
as specified by the table below.

function Support Description
0 Mandatory LOGIN
1 Mandatory QUERY LOGINS
2 — Reserved for future standardization
3 Mandatory RECONNECT
4 Optional SET PASSWORD (see ANSI
NCITS.325-1998 Annex C)
5-6 — Reserved for future standardization
7 Mandatory LOGOUT
8- A — Reserved for future standardization
Bis Not supported | ABORT TASK
Cie Mandatory ABORT TASK SET
Dis — Reserved for future standardization
Eie Not supported | LOGICAL UNIT RESET
Fie Mandatory TARGET RESET

44

IDT_r02
May 19, 1999

Annex B

(normative)
Compliance with ANSI NCITS 325-1998

Subsequent to the approval of SBP-2 as an American National Standard, the IEEE P1212r working group
commenced a revision of the CSR Architecture. The image data transport protocol, based upon SBP-2,
conforms to the more recent recommendations and requirements of draft standard IEEE P1212r, some of
which conflict with normative requirements of ANSI NCITS 325-1998. This annex lists the points of

divergence.

45

IDT_r02
May 19, 1999

Annex C
(normative)

Control request and response parameters
The table below provides a quick reference to the parameters associated with particular control requests

and responses; consult section 8 for details for a particular request or response. Optional parameters are
shown by parentheses; the last column indicates whether or not the response information may be sent

autonomously.

Request Response Autonomous
ctrl_function Name Requester parameters parameters response
SERVICE_ID 4
. — Queue ID(s)
Initiator MODE No
(TASK_SLOTS) TASK_SLOTS
1 CONNECT Queue |D(S)3
SERVICE_ID
Target MODE (TASK_SLOTS) No
TASK_SLOTS
2 DISCONNECT — Oueue 1D{s)4 — No
3 ABORT — Queue tb(s)’ — Ne
Coplp e
SHUTDOWN
2 QUEUE — Queue ID No response allowed
RESET " 5
3 CONNECTION Initiator Queue ID(s) — No
SERVICE .
4 DIRECTORY — — SERVICE_ID(s) Permitted
5 STATUS Initiator — QUEUE_INFO Target only

* At least one gueue ID parameter shall be present, either 12T_QUEUE or T2l_QUEUE, and both may be present. In

the latter case the two queue ID parameters may identify different queues or the same queue.

®> The queue ID parameter(s) shall be the same originally provided by the target when the connection was

established.

47

IDT_r02
May 19, 1999

Annex D
(informative)

Configuration ROM

Configuration ROM is located at a base address of FFFF FOO0 04004 within a node’s address space. The
requirements for general format configuration ROM for devices compliant with this standard are specified
in section 7. This annex contains illustrations of typical configuration ROM for a variety of devices.

D.1 Bus information block and root directory
Figure D-1 below shows a typical bus information block, root directory and textual descriptor leaves for
devices compliant with this standard. Not shown are the instance, feature and unit directories themselves;

these may vary according to the complexity of the device and its supported software interfaces. Consult
other clauses in this annex for examples of printers, scanners and other, multifunction devices.

most significant

4 9 CRC (ca‘lculated)
| |
‘ 3133 39345 (‘ASCII “1394") ‘
| | | | | | | | | | | |
‘ node_options ‘(OOFF 200016)
| | | | | | | | | | | | | | | | | |
‘ node_vendor_ID ‘ chip_ID_hi
| | | | | | | | | | | | | |
chip_ID_lo
| ‘ | | | | | | | | | | ‘ | | | | | |
4 Root directory CRC (calculated)
| | | | | | | | | | | | | | | | |
0316 vendor_ID
| | | | | ‘ | | | | | | | ‘ | | | | | | |
8116 Text descriptor leaf offset (3)
| | | | | | | | | | | | | | | | | | |
0C16 nodt‘a_capabilities (00 83C0156)
| | | | | | | | | | | | | |
D816 Instance directory offs¢‘at
| | | | | | | | | | | | | | | | | |
3 Text leaf CR(‘Z (calculated)
| | | | | | | | | | | | | | | | |
0 specifier_ID (0)
| | | | | | | | | | | | | | | | | | | ‘ | | |
width (0) cha‘lracter_set 0) language (0)
| |
| 5859 5A2016 (‘ASCII “XYZ ") |
| | | | | | | | | | | | | | | |

|
least significant

Figure D-1 — Example bus information block and root directory
The CRC in the first quadlet is calculated on following nine quadlets of configuration ROM, the bus
information block and the root directory. Devices should not include all of configuration ROM within the
coverage provided by this CRC; the other directories and leaves each contain their own CRC.

The node_options field represents a collection of bits and fields specified draft standard IEEE P1212r. The
value shown, 00FF 2000,¢, represents basic characteristics of a device that is not isochronous capable.

49

IDT_r02
May 19, 1999

This value is composed of a cyc_clk_acc field with a value of FF, and a max_rec value of two. The
max_rec field encodes a maximum payload of eight bytes in block write requests addressed to the target.

The Node_Capabilities entry in the root directory, with a key field of 0C,4, has a value where the spt, 64,
fix, Ist and drq bits are all one. This is a minimum requirement for devices compliant with this standard.

The Vendor_ID entry in the root directory, with a key field of 03, is immediately followed by a textual
descriptor leaf entry, with a key field of 81,¢, whose indirect_offset value points to a leaf that contains an
ASCII string that identifies the vendor (the XYZ company). Although the textual descriptor leaf utilizes
minimal ASCII, a permissible variant might include a textual descriptor directory in order to provide
multiple language support.

The Instance_Directory entry in the root directory, with a key field of D84, is the starting point for device
discovery (enumeration) software to search configuration ROM for particular function instances.

EDITOR's NOTE — Incorporate sample configuration ROM from the CSR and configuration ROM profile for
image devices.

D.2 Scanner with a single unit architecture
D.3 Printer with multiple unit architectures

D.4 Multifunction device with uniform unit architectures

50

